Energy density functional theory in nuclei: does it have to be relativistic?

For more than 20 years, relativistic energy density functionals have been used in nuclear physics. Technically more complicated, they have some essential advantages compared to the much older non-relativistic functionals.

[1]  P. Ring,et al.  Fission barriers in covariant density functional theory: Extrapolation to superheavy nuclei , 2012, 1205.2138.

[2]  B. V. Carlson,et al.  The Dirac–Brueckner–Hartree–Fock approach: from infinite matter to effective Lagrangians for finite systems , 2010, 1003.5524.

[3]  J. Meng,et al.  Avoid the Tsunami of the Dirac sea in the Imaginary Time Step method , 2009, 0905.2505.

[4]  P. Ring,et al.  1 2 Se p 20 09 Relativistic RPA in axial symmetry , 2022 .

[5]  P. Ring,et al.  Covariant density functional theory for magnetic rotation , 2008 .

[6]  J. Ginocchio Relativistic symmetries in nuclei and hadrons , 2005 .

[7]  Peter Ring,et al.  Relativistic Hartree-Bogoliubov theory: static and dynamic aspects of exotic nuclear structure , 2005 .

[8]  Paul-Henri Heenen,et al.  Self-consistent mean-field models for nuclear structure , 2003 .

[9]  P. Ring,et al.  The time-dependent relativistic mean-field theory and the random phase approximation , 2001, nucl-th/0106061.

[10]  L. Robledo,et al.  Moments of inertia of nuclei in the rare earth region: A relativistic versus nonrelativistic investigation , 2000, nucl-th/0011077.

[11]  P. Ring,et al.  Cranked relativistic Hartree–Bogoliubov theory: formalism and application to the superdeformed bands in the A∼190 region , 2000, nucl-th/0001054.

[12]  J. Ginocchio Pseudospin as a relativistic symmetry , 1996, nucl-th/9611044.

[13]  Peter Ring,et al.  Relativistic mean field theory in finite nuclei , 1996 .

[14]  Paul-Gerhard Reinhard,et al.  Nuclear effective forces and isotope shifts , 1995 .

[15]  Dobaczewski,et al.  Time-odd components in the mean field of rotating superdeformed nuclei. , 1995, Physical review. C, Nuclear physics.

[16]  Sharma,et al.  Isospin dependence of the spin-orbit force and effective nuclear potentials. , 1994, Physical review letters.

[17]  P. Ring,et al.  Anomaly in the charge radii of Pb isotopes , 1993, nucl-th/9310009.

[18]  M. S. Weiss,et al.  Self-consistent calculation of charge radii of Pb isotopes , 1993 .

[19]  Cohen,et al.  From QCD sum rules to relativistic nuclear physics. , 1991, Physical review letters.

[20]  P. Ring,et al.  A relativistic theory of superdeformations in rapidly rotating nuclei , 1990 .

[21]  M. Anastasio,et al.  RELATIVISTIC NUCLEAR STRUCTURE PHYSICS , 1983 .

[22]  J. Walecka A theory of highly condensed matter , 1974 .

[23]  F. Coester,et al.  VARIATION IN NUCLEAR-MATTER BINDING ENERGIES WITH PHASE-SHIFT-EQUIVALENT TWO-BODY POTENTIALS. , 1970 .