Barycentric Coordinates on Surfaces

This paper introduces a method for defining and efficiently computing barycentric coordinates with respect to polygons on general surfaces. Our construction is geared towards injective polygons (polygons that can be enclosed in a metric ball of an appropriate size) and is based on replacing the linear precision property of planar coordinates by a requirement in terms of center of mass, and generalizing this requirement to the surface setting. We show that the resulting surface barycentric coordinates can be computed using planar barycentric coordinates with respect to a polygon in the tangent plane. We prove theoretically that the surface coordinates properly generalize the planar coordinates and carry some of their useful properties such as unique reconstruction of a point given its coordinates, uniqueness for triangles, edge linearity, similarity invariance, and smoothness; in addition, these coordinates are insensitive to isometric deformations and can be used to reconstruct isometries. We show empirically that surface coordinates are shape‐aware with consistent gross behavior across different surfaces, are well‐behaved for different polygon types/locations on variety of surface forms, and that they are fast to compute. Finally, we demonstrate effectiveness of surface coordinates for interpolation, decal mapping, and correspondence refinement.

[1]  E. Cartan Groupes simples clos et ouverts et géométrie riemannienne , 1929 .

[2]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[3]  Joseph S. B. Mitchell,et al.  The Discrete Geodesic Problem , 1987, SIAM J. Comput..

[4]  Gerald E. Farin,et al.  Surfaces over Dirichlet tessellations , 1990, Comput. Aided Geom. Des..

[5]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[6]  Andrew P. Witkin,et al.  Free-form shape design using triangulated surfaces , 1994, SIGGRAPH.

[7]  Hans Køhling Pedersen,et al.  Decorating implicit surfaces , 1995, SIGGRAPH.

[8]  Larry L. Schumaker,et al.  Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..

[9]  Marc Olano,et al.  Reflection space image based rendering , 1999, SIGGRAPH.

[10]  Nelson L. Max,et al.  Weights for Computing Vertex Normals from Facet Normals , 1999, J. Graphics, GPU, & Game Tools.

[11]  Samuel R. Buss,et al.  Spherical averages and applications to spherical splines and interpolation , 2001, TOGS.

[12]  Preface A Panoramic View of Riemannian Geometry , 2003 .

[13]  Michael S. Floater,et al.  Mean value coordinates , 2003, Comput. Aided Geom. Des..

[14]  M. Harmer Barycentric Coordinates on the Hyperbolic Plane , 2003 .

[15]  M. Floater Mean value coordinates , 2003, Computer Aided Geometric Design.

[16]  Steven J. Gortler,et al.  Fast exact and approximate geodesics on meshes , 2005, ACM Trans. Graph..

[17]  Mathieu Desbrun,et al.  A geometric construction of coordinates for convex polyhedra using polar duals , 2005, SGP '05.

[18]  Brian Wyvill,et al.  Interactive decal compositing with discrete exponential maps , 2006, ACM Trans. Graph..

[19]  Kai Hormann,et al.  Mean value coordinates for arbitrary planar polygons , 2006, TOGS.

[20]  Hans-Peter Seidel,et al.  Spherical barycentric coordinates , 2006, SGP '06.

[21]  Kai Hormann,et al.  A general construction of barycentric coordinates over convex polygons , 2006, Adv. Comput. Math..

[22]  Jan Erik Solem Geodesic Curves for Analysis of Continuous Implicit Shapes , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[23]  Xavier Pennec,et al.  Intrinsic Statistics on Riemannian Manifolds: Basic Tools for Geometric Measurements , 2006, Journal of Mathematical Imaging and Vision.

[24]  Jan Erik Solem Geodesic Curves for Analysis of Continuous Implicit Shapes , 2006, ICPR.

[25]  Daniel Cohen-Or,et al.  GPU-assisted positive mean value coordinates for mesh deformations , 2007, Symposium on Geometry Processing.

[26]  Mark Meyer,et al.  Harmonic coordinates for character articulation , 2007, ACM Trans. Graph..

[27]  Renaud Keriven,et al.  Projection onto a Shape Manifold for Image Segmentation with Prior , 2007, 2007 IEEE International Conference on Image Processing.

[28]  Peter Meer,et al.  Nonlinear Mean Shift over Riemannian Manifolds , 2009, International Journal of Computer Vision.

[29]  Kai Hormann,et al.  Maximum Entropy Coordinates for Arbitrary Polytopes , 2008, Comput. Graph. Forum.

[30]  Alexander M. Bronstein,et al.  Numerical Geometry of Non-Rigid Shapes , 2009, Monographs in Computer Science.

[31]  Renaud Keriven,et al.  Pre-image as Karcher Mean Using Diffusion Maps: Application to Shape and Image Denoising , 2009, SSVM.

[32]  E. Wachspress,et al.  A Rational Finite Element Basis , 1975 .