Evolutionary Lability of Context-Dependent Codon Bias in Bacteria

[1]  S. Salzberg,et al.  Evidence for lateral gene transfer between Archaea and Bacteria from genome sequence of Thermotoga maritima , 1999, Nature.

[2]  S. Salzberg,et al.  Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi , 1997, Nature.

[3]  R. Fleischmann,et al.  The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus , 1997, Nature.

[4]  N. W. Davis,et al.  The complete genome sequence of Escherichia coli K-12. , 1997, Science.

[5]  P. Sharp,et al.  Systematic base composition variation around the genome of Mycoplasma genitalium, but not Mycoplasma pneumoniae , 1997, Molecular microbiology.

[6]  Mark Borodovsky,et al.  The complete genome sequence of the gastric pathogen Helicobacter pylori , 1997, Nature.

[7]  S Karlin,et al.  Compositional biases of bacterial genomes and evolutionary implications , 1997, Journal of bacteriology.

[8]  H. Ochman,et al.  Strand asymmetries in DNA evolution. , 1997, Trends in genetics : TIG.

[9]  O. Berg,et al.  Codon bias in Escherichia coli: the influence of codon context on mutation and selection. , 1997, Nucleic acids research.

[10]  H. Hilbert,et al.  Complete sequence analysis of the genome of the bacterium Mycoplasma pneumoniae. , 1996, Nucleic acids research.

[11]  R. Fleischmann,et al.  Complete Genome Sequence of the Methanogenic Archaeon, Methanococcus jannaschii , 1996, Science.

[12]  J. M. Smith,et al.  Site-specific codon bias in bacteria. , 1996, Genetics.

[13]  P. Farabaugh Programmed translational frameshifting. , 1996, Annual review of genetics.

[14]  R. Fleischmann,et al.  The Minimal Gene Complement of Mycoplasma genitalium , 1995, Science.

[15]  R. Fleischmann,et al.  Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. , 1995, Science.

[16]  P. Sharp,et al.  CODONS: a microcomputer program for codon usage analysis. , 1992, The Journal of heredity.

[17]  A. Bhagwat,et al.  DNA mismatch correction by Very Short Patch repair may have altered the abundance of oligonucleotides in the E. coli genome. , 1992, Nucleic acids research.

[18]  R. Merkl,et al.  Statistical evaluation and biological interpretation of non-random abundance in the E. coli K-12 genome of tetra- and pentanucleotide sequences related to VSP DNA mismatch repair. , 1992, Nucleic acids research.

[19]  S. Karlin,et al.  Over- and under-representation of short oligonucleotides in DNA sequences. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[20]  M. Bulmer The selection-mutation-drift theory of synonymous codon usage. , 1991, Genetics.

[21]  M. Lieb,et al.  Spontaneous mutation at a 5-methylcytosine hotspot is prevented by very short patch (VSP) mismatch repair. , 1991, Genetics.

[22]  A. Danchin,et al.  Escherichia coli molecular genetic map (1500 kbp): update II , 1990, Molecular microbiology.

[23]  M. Bulmer The effect of context on synonymous codon usage in genes with low codon usage bias. , 1990, Nucleic acids research.

[24]  A. Wada,et al.  Novel third-letter bias in Escherichia coli codons revealed by rigorous treatment of coding constraints. , 1989, Journal of molecular biology.

[25]  G. W. Hatfield,et al.  Nonrandom utilization of codon pairs in Escherichia coli. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[26]  J. Parker,et al.  Missense misreading of asparagine codons as a function of codon identity and context. , 1987, The Journal of biological chemistry.

[27]  M. Gouy Codon contexts in enterobacterial and coliphage genes. , 1987, Molecular biology and evolution.

[28]  R. Ivarie,et al.  Mono- through hexanucleotide composition of the Escherichia coli genome: a Markov chain analysis. , 1987, Nucleic acids research.

[29]  P. Sharp,et al.  The codon Adaptation Index--a measure of directional synonymous codon usage bias, and its potential applications. , 1987, Nucleic acids research.

[30]  E. G. Shpaer Constraints on codon context in Escherichia coli genes. Their possible role in modulating the efficiency of translation. , 1986, Journal of molecular biology.

[31]  M Yarus,et al.  Sense codons are found in specific contexts. , 1985, Journal of molecular biology.

[32]  S. Osawa,et al.  UGA is read as tryptophan in Mycoplasma capricolum. , 1985, Proceedings of the National Academy of Sciences of the United States of America.

[33]  L. Bossi,et al.  Context effects: translation of UAG codon by suppressor tRNA is affected by the sequence following UAG in the message. , 1983, Journal of molecular biology.

[34]  T. Ikemura Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes: a proposal for a synonymous codon choice that is optimal for the E. coli translational system. , 1981, Journal of molecular biology.

[35]  Manolo Gouy,et al.  Codon catalog usage is a genome strategy modulated for gene expressivity , 1981, Nucleic Acids Res..

[36]  Philip J. Farabaugh,et al.  Molecular basis of base substitution hotspots in Escherichia coli , 1978, Nature.

[37]  S. Salzberg,et al.  Complete genome sequence of Treponema pallidum, the syphilis spirochete. , 1998, Science.

[38]  C. Steegborn,et al.  Compilation of tRNA sequences and sequences of tRNA genes. , 1996, Nucleic acids research.

[39]  R. Merkl,et al.  Substrate preferences of Vsr DNA mismatch endonuclease and their consequences for the evolution of the Escherichia coli K-12 genome. , 1995, Journal of molecular biology.