Searching for gravitational waves from Cassiopeia A with LIGO

We describe a search underway for periodic gravitational waves from the central compact object in the supernova remnant Cassiopeia A. The object is the youngest likely neutron star in the Galaxy. Its position is well known, but the object does not pulse in any electromagnetic radiation band and thus presents a challenge in searching the parameter space of frequency and frequency derivatives. We estimate that a fully coherent search can, with a reasonable amount of time on a computing cluster, achieve a sensitivity at which it is theoretically possible (though not likely) to observe a signal even with the initial LIGO noise spectrum. Cassiopeia A is only the second object after the Crab pulsar for which this is true. The search method described here can also obtain interesting results for similar objects with current LIGO sensitivity.

[1]  Piotr Jaranowski,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search , 2010, 1003.0844.

[2]  et al,et al.  Einstein@Home search for periodic gravitational waves in LIGO S4 data , 2008, 0804.1747.

[3]  E. al.,et al.  Erratum: All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D 77, 022001 (2008)] , 2007, 0708.3818.

[4]  C. Broeck,et al.  BEATING THE SPIN-DOWN LIMIT ON GRAVITATIONAL WAVE EMISSION FROM THE VELA PULSAR , 2008, 0805.4758.

[5]  M. M. Casey,et al.  All-sky search for periodic gravitational waves in LIGO S4 data [Phys. Rev. D 77, 022001 (2008)][Publisher's note] , 2008 .

[6]  D. Jones,et al.  Are neutron stars with crystalline color-superconducting cores relevant for the LIGO experiment? , 2007, Physical review letters.

[7]  L. Lin Constraining crystalline color superconducting quark matter with gravitational-wave data , 2007, 0708.2965.

[8]  Reinhard Prix,et al.  Template-based searches for gravitational waves: efficient lattice covering of flat parameter spaces , 2007, 0707.0428.

[9]  I. Wasserman,et al.  Toroidal magnetic fields in type II superconducting neutron stars , 2007, 0705.2195.

[10]  K. Glampedakis,et al.  Modelling magnetically deformed neutron stars , 2007, 0705.1780.

[11]  et al,et al.  Upper limit map of a background of gravitational waves (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (082003)) , 2007, astro-ph/0703234.

[12]  M. M. Casey,et al.  Upper limits on gravitational wave emission from 78 radio pulsars (Physical Review D - Particles, Fields, Gravitation and Cosmology (2007) 76, (042001)) , 2007, gr-qc/0702039.

[13]  D. M. Whitbeck Observational Consequences of Gravitational Wave Emission From Spinning Compact Sources , 2006 .

[14]  T. Hayler,et al.  Searches for periodic gravitational waves from unknown isolated sources and Scorpius X-1: Results from the second LIGO science run , 2006 .

[15]  B. Owen Detectability of periodic gravitational waves by initial interferometers , 2006 .

[16]  M. Dopita,et al.  The Expansion Asymmetry and Age of the Cassiopeia A Supernova Remnant , 2006, astro-ph/0603371.

[17]  G. Pavlov,et al.  Near-Infrared and Optical Limits for the Central X-Ray Point Source in the Cassiopeia A Supernova Remnant , 2005, astro-ph/0509552.

[18]  et al,et al.  First all-sky upper limits from LIGO on the strength of periodic gravitational waves using the Hough transform , 2005, gr-qc/0508065.

[19]  M. Bejger,et al.  Constraints on the dense matter equation of state from the measurements of PSR J0737¿3039A moment of inertia and PSR J0751+1807 mass , 2005, astro-ph/0508105.

[20]  B. Schutz,et al.  Generalized F-statistic : Multiple detectors and multiple gravitational wave pulsars , 2005, gr-qc/0504011.

[21]  R. Manchester,et al.  The Australia Telescope National Facility Pulsar Catalogue , 2005 .

[22]  B. Owen Maximum elastic deformations of compact stars with exotic equations of state. , 2005, Physical review letters.

[23]  M. M. Casey,et al.  Limits on gravitational-wave emission from selected pulsars using LIGO data. , 2004, Physical review letters.

[24]  M. M. Casey,et al.  Setting upper limits on the strength of periodic gravitational waves from PSR J1939+2134 using the first science data from the GEO 600 and LIGO detectors , 2004 .

[25]  G. Pavlov,et al.  Central Compact Objects in Supernova Remnants , 2003, astro-ph/0311526.

[26]  C. Cutler Gravitational Waves from Neutron Stars with Large Toroidal B-fields , 2002, gr-qc/0206051.

[27]  J. Heyl,et al.  The Central X-Ray Point Source in Cassiopeia A , 2000, astro-ph/0001026.

[28]  C. Palomba Pulsars ellipticity revised , 1999, astro-ph/9912356.

[29]  Bernard F. Schutz,et al.  Gravitational waves from hot young rapidly rotating neutron stars , 1998, gr-qc/9804044.

[30]  B. Schutz,et al.  Data analysis of gravitational-wave signals from spinning neutron stars. I. The signal and its detection , 1998, gr-qc/9804014.

[31]  T. Hales Sphere packings, I , 1998, Discret. Comput. Geom..

[32]  B. Owen,et al.  Search templates for gravitational waves from inspiraling binaries: Choice of template spacing. , 1995, Physical review. D, Particles and fields.

[33]  A. Fabian,et al.  The Three-dimensional Structure of the Cassiopeia A Supernova Remnant. I. The Spherical Shell , 1995 .

[34]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[35]  V. Radhakrishnan On the nature of pulsars , 1982 .

[36]  M. Zimmermann,et al.  Gravitational waves from rotating and precessing rigid bodies - Simple models and applications to pulsars , 1979 .

[37]  J. Gunn,et al.  On the nature of pulsars. I - Theory. , 1969 .

[38]  S. Vila Nature of Pulsars , 1969, Nature.

[39]  D. Layzer The Nature of Pulsars , 1968, Nature.