Utilizing transient breakthroughs for evaluating the potential of Kureha carbon for CO2 capture

[1]  Alírio E. Rodrigues,et al.  Methane purification by adsorptive processes on MIL-53(Al) , 2015 .

[2]  R. Krishna,et al.  Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74 , 2014 .

[3]  R. Krishna,et al.  Utilizing the Gate-Opening Mechanism in ZIF-7 for Adsorption Discrimination between N2O and CO2 , 2014 .

[4]  R. Krishna The Maxwell–Stefan description of mixture diffusion in nanoporous crystalline materials , 2014 .

[5]  Antonio Benito Fuertes Arias,et al.  Assessment of the Role of Micropore Size and N-Doping in CO2 Capture by Porous Carbons , 2013 .

[6]  A. B. Fuertes,et al.  Assessment of the role of micropore size and N-doping in CO2 capture by porous carbons. , 2013, ACS applied materials & interfaces.

[7]  R. Krishna,et al.  Investigating the influence of diffusional coupling on mixture permeation across porous membranes , 2013 .

[8]  Gang Yu,et al.  Granular bamboo-derived activated carbon for high CO(2) adsorption: the dominant role of narrow micropores. , 2012, ChemSusChem.

[9]  M. Titirici,et al.  High-performance CO2 sorbents from algae , 2012 .

[10]  R. Krishna,et al.  Investigating the relative influences of molecular dimensions and binding energies on diffusivities of guest species inside nanoporous crystalline materials , 2012 .

[11]  R. Krishna,et al.  Cu-TDPAT, an rht-type dual-functional metal-organic framework offering significant potential for use in H2 and natural gas purification processes operating at high pressures , 2012 .

[12]  Jun Liu,et al.  Progress in adsorption-based CO2 capture by metal-organic frameworks. , 2012, Chemical Society reviews.

[13]  Rajamani Krishna,et al.  Investigating the validity of the Bosanquet formula for estimation of diffusivities in mesopores , 2012 .

[14]  Hong-Cai Zhou,et al.  Metal-organic frameworks for separations. , 2012, Chemical reviews.

[15]  Kenji Sumida,et al.  Carbon dioxide capture in metal-organic frameworks. , 2012, Chemical reviews.

[16]  R. Krishna,et al.  MaxwellStefan modeling of slowing-down effects in mixed gas permeation across porous membranes , 2011 .

[17]  Yury Gogotsi,et al.  Effect of pore size on carbon dioxide sorption by carbide derived carbon , 2011 .

[18]  Kenji Sumida,et al.  Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption , 2011 .

[19]  R. Krishna,et al.  Investigating the potential of MgMOF-74 membranes for CO2 capture , 2011 .

[20]  Yijun Zhong,et al.  One-Pot Synthesis and CO2 Adsorption Properties of Ordered Mesoporous SBA-15 Materials Functionalized with APTMS , 2011 .

[21]  R. Krishna,et al.  In silico screening of metal-organic frameworks in separation applications. , 2011, Physical chemistry chemical physics : PCCP.

[22]  A. Matzger,et al.  Effect of humidity on the performance of microporous coordination polymers as adsorbents for CO2 capture. , 2011, Langmuir : the ACS journal of surfaces and colloids.

[23]  S. Nguyen,et al.  De novo synthesis of a metal-organic framework material featuring ultrahigh surface area and gas storage capacities. , 2010, Nature chemistry.

[24]  Rajamani Krishna,et al.  In silico screening of zeolite membranes for CO2 capture , 2010 .

[25]  Marta G. Plaza,et al.  Post-combustion CO2 capture with a commercial activated carbon: Comparison of different regeneration strategies , 2010 .

[26]  Chongli Zhong,et al.  Exceptional CO2 Capture Capability and Molecular-Level Segregation in a Li-Modified Metal−Organic Framework , 2010 .

[27]  J. J. Pis,et al.  On the limits of CO2 capture capacity of carbons , 2010 .

[28]  M. LeVan,et al.  CO2/H2O adsorption equilibrium and rates on metal-organic frameworks: HKUST-1 and Ni/DOBDC. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[29]  Randall Q. Snurr,et al.  Ultrahigh Porosity in Metal-Organic Frameworks , 2010, Science.

[30]  Ping Li,et al.  Adsorption equilibria and kinetics of CO2 and N2 on activated carbon beads , 2010 .

[31]  Avelino Corma,et al.  Extra-large-pore zeolites: bridging the gap between micro and mesoporous structures. , 2010, Angewandte Chemie.

[32]  Avelino Corma,et al.  New insights on CO2-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[33]  Jianguo Mi,et al.  Li-modified metal–organic frameworks for CO2/CH4 separation: a route to achieving high adsorption selectivity , 2010 .

[34]  Michael O'Keeffe,et al.  Synthesis, structure, and carbon dioxide capture properties of zeolitic imidazolate frameworks. , 2010, Accounts of chemical research.

[35]  Christopher W. Jones,et al.  Adsorbent materials for carbon dioxide capture from large anthropogenic point sources. , 2009, ChemSusChem.

[36]  Yu Wang,et al.  Adsorption Equilibrium of Carbon Dioxide and Water Vapor on Zeolites 5A and 13X and Silica Gel: Pure Components , 2009 .

[37]  Xiaoliang Ma,et al.  "Molecular basket" sorbents for separation of CO(2) and H(2)S from various gas streams. , 2009, Journal of the American Chemical Society.

[38]  P. Webley,et al.  Competition of CO2/H2O in adsorption based CO2 capture , 2009 .

[39]  Freek Kapteijn,et al.  Separation and permeation characteristics of a DD3R zeolite membrane , 2008 .

[40]  C. Serre,et al.  High uptakes of CO2 and CH4 in mesoporous metal-organic frameworks MIL-100 and MIL-101. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[41]  Jun Zhang,et al.  Effect of process parameters on power requirements of vacuum swing adsorption technology for CO2 capture from flue gas , 2008 .

[42]  Jun Zhang,et al.  Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X , 2008 .

[43]  José A.C. Silva,et al.  A Microporous Metal−Organic Framework for Separation of CO2/N2 and CO2/CH4 by Fixed-Bed Adsorption , 2008 .

[44]  R. B. Slimane,et al.  Progress in carbon dioxide separation and capture: a review. , 2008, Journal of environmental sciences.

[45]  Nada Assaf-Anid,et al.  Curbing the greenhouse effect by carbon dioxide adsorption with Zeolite 13X , 2007 .

[46]  R. Quadrelli,et al.  The energy-climate challenge: Recent trends in CO2 emissions from fuel combustion , 2007 .

[47]  Rajamani Krishna,et al.  Using molecular simulations for screening of zeolites for separation of CO2/CH4 mixtures , 2007 .

[48]  Sabtanti Harimurti,et al.  Degradation of Monoethanolamine in Aqueous Solution by Fenton’s Reagent with Biological Post-treatment , 2007 .

[49]  Wei Xing,et al.  Superior electric double layer capacitors using ordered mesoporous carbons , 2006 .

[50]  F. Kapteijn,et al.  Role of Adsorption in the Permeation of CH4 and CO2 through a Silicalite-1 Membrane , 2006 .

[51]  F. Kapteijn,et al.  Adsorption on Kureha Activated Carbon: Isotherms and Kinetics , 2005 .

[52]  F. Kapteijn,et al.  Comparison of adsorption behaviour of light alkanes and alkenes on Kureha activated carbon , 2005 .

[53]  S. Himeno,et al.  High-Pressure Adsorption Equilibria of Methane and Carbon Dioxide on Several Activated Carbons , 2005 .

[54]  F. Kapteijn,et al.  Adsorption of butane isomers and SF6 on Kureha activated carbon: 1. Equilibrium. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[55]  F. Kapteijn,et al.  Adsorption of butane isomers and SF6 on Kureha activated carbon: 2. Kinetics , 2004 .

[56]  K. Loughlin,et al.  Adsorption equilibria and rate parameters for nitrogen and methane on Maxsorb activated carbon , 1996 .

[57]  Alan L. Myers,et al.  Adsorption equilibrium data handbook , 1989 .

[58]  Alan L. Myers,et al.  Thermodynamics of mixed‐gas adsorption , 1965 .