Droplet mobility on lubricant-impregnated surfaces

Non-wetting surfaces containing micro/nanotextures impregnated with lubricating liquids have recently been shown to exhibit superior non-wetting performance compared to superhydrophobic surfaces that rely on stable air–liquid interfaces. Here we examine the fundamental physico-chemical hydrodynamics that arise when droplets, immiscible with the lubricant, are placed on and allowed to move along these surfaces. We find that these four-phase systems show novel contact line morphology comprising a finite annular ridge of the lubricant pulled above the surface texture and consequently as many as three distinct 3-phase contact lines. We show that these distinct morphologies not only govern the contact line pinning that controls droplets' initial resistance to movement but also the level of viscous dissipation and hence their sliding velocity once the droplets begin to move.

[1]  P. L. Noüy,et al.  AN INTERFACIAL TENSIOMETER FOR UNIVERSAL USE. , 1925 .

[2]  J. A. Crowther Reports on Progress in Physics , 1941, Nature.

[3]  Journal of Colloid Science , 1946, Nature.

[4]  R. Grimshaw Journal of Fluid Mechanics , 1956, Nature.

[5]  Arrow,et al.  The Physics of Fluids , 1958, Nature.

[6]  C. Furmidge,et al.  Studies at phase interfaces. I. The sliding of liquid drops on solid surfaces and a theory for spray retention , 1962 .

[7]  C. E. Stauffer The Measurement of Surface Tension by the Pendant Drop Technique , 1965 .

[8]  P. G. de Gennes,et al.  A model for contact angle hysteresis , 1984 .

[9]  P. Gennes Wetting: statics and dynamics , 1985 .

[10]  R. Good,et al.  Contact angle, wetting, and adhesion: a critical review , 1992 .

[11]  Ernesto Occhiello,et al.  Polymer Surfaces: From Physics to Technology , 1994 .

[12]  Martin E. R. Shanahan,et al.  Viscoelastic Dissipation in Wetting and Adhesion Phenomena , 1995 .

[13]  Martin E. R. Shanahan,et al.  Viscoelastic effects in the spreading of liquids , 1996, Nature.

[14]  Extrand,et al.  Contact Angles and Hysteresis on Soft Surfaces , 1996, Journal of colloid and interface science.

[15]  W. Barthlott,et al.  Purity of the sacred lotus, or escape from contamination in biological surfaces , 1997, Planta.

[16]  D. Quéré,et al.  Drops at Rest on a Tilted Plane , 1998 .

[17]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[18]  B. Widom Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2003 .

[19]  P. Gennes,et al.  Capillarity and Wetting Phenomena , 2004 .

[20]  Xuefeng Gao,et al.  Biophysics: Water-repellent legs of water striders , 2004, Nature.

[21]  A. Buguin,et al.  Bouncing or sticky droplets: Impalement transitions on superhydrophobic micropatterned surfaces , 2005, cond-mat/0510773.

[22]  David Quéré,et al.  Non-sticking drops , 2005 .

[23]  R. Cerbino Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves , 2006 .

[24]  Z. Hórvölgyi,et al.  Obtaining surface tension from contact angle data by the individual representation approach , 2007 .

[25]  Gareth H. McKinley,et al.  Designing Superoleophobic Surfaces , 2007, Science.

[26]  D. Quéré Wetting and Roughness , 2008 .

[27]  Julia M. Yeomans,et al.  Impalement of fakir drops , 2007 .

[28]  G. Srinivas,et al.  Time dependence of effective slip on textured hydrophobic surfaces , 2009 .

[29]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[30]  H. Stone,et al.  Rolling stones: The motion of a sphere down an inclined plane coated with a thin liquid film , 2009 .

[31]  Kripa K. Varanasi,et al.  Spatial control in the heterogeneous nucleation of water , 2009 .

[32]  T. Deng,et al.  Nonwetting of impinging droplets on textured surfaces , 2009 .

[33]  J. Rühe,et al.  Some thoughts on superhydrophobic wetting , 2009 .

[34]  G. McKinley,et al.  Exploiting topographical texture to impart icephobicity. , 2010, ACS nano.

[35]  S. Dietrich,et al.  Vapour pressure of ionic liquids , 2010, 1006.2090.

[36]  N. Patankar Vapor stabilizing substrates for superhydrophobicity and superslip. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[37]  Neelesh A. Patankar,et al.  Supernucleating surfaces for nucleate boiling and dropwise condensation heat transfer , 2010 .

[38]  T. Deng,et al.  Frost formation and ice adhesion on superhydrophobic surfaces , 2010 .

[39]  H. Butt,et al.  The softer the better: fast condensation on soft surfaces. , 2010, Langmuir : the ACS journal of surfaces and colloids.

[40]  David Quéré,et al.  Slippery pre-suffused surfaces , 2011 .

[41]  I. Steinbach,et al.  Contact angle dependence of the velocity of sliding cylindrical drop on flat substrates , 2011 .

[42]  Chang-Jin Kim,et al.  Underwater restoration and retention of gases on superhydrophobic surfaces for drag reduction. , 2011, Physical review letters.

[43]  Eric Lauga,et al.  A smooth future? , 2011, Nature materials.

[44]  G. McHale,et al.  The superhydrophobicity of polymer surfaces: Recent developments , 2011 .

[45]  Sindy K. Y. Tang,et al.  Bioinspired self-repairing slippery surfaces with pressure-stable omniphobicity , 2011, Nature.

[46]  C. Clanet,et al.  Coating of a textured solid , 2011, Journal of Fluid Mechanics.

[47]  W. Marsden I and J , 2012 .

[48]  Joanna Aizenberg,et al.  Liquid-infused nanostructured surfaces with extreme anti-ice and anti-frost performance. , 2012, ACS nano.

[49]  Sushant Anand,et al.  Enhanced condensation on lubricant-impregnated nanotextured surfaces. , 2012, ACS nano.

[50]  Kathy P. Wheeler,et al.  Reviews of Modern Physics , 2013 .

[51]  Dongyuan Zhao,et al.  Journal of Colloid and Interface Science. Editorial. , 2014, Journal of colloid and interface science.

[52]  S. Wereley,et al.  soft matter , 2019, Science.

[53]  Journal of Chemical Physics , 1932, Nature.

[54]  October I Physical Review Letters , 2022 .