Inverse of a fuzzy matrix of fuzzy numbers

The aim of this paper is to extend the concept of inverse of a matrix with fuzzy numbers as its elements, which may be used to model uncertain and imprecise aspects of real-world problems. We pursue two main ideas based on employing real scenarios and arithmetic operators. In each case, exact and inexact strategies are provided. In the first idea, we give some necessary and sufficient conditions for invertibility of fuzzy matrices based on regularity of their scenarios. And then Zadeh's extension principle and interpolation on Rohn's approach for inverting interval matrices are followed to compute fuzzy inverse. In the second idea, Dubois and Prade's arithmetic operators will be employed for the same purpose. But with respect to the inherent difficulties which are derived from the positivity restriction on spreads of fuzzy numbers, the concept of ϵ-inverse of a fuzzy matrix and its relaxation are generalized and some useful theorems will be revealed. Finally fuzzifying the defuzzified version of the original problem for introducing fuzzy inverse, which can be followed by each idea, will be presented.

[1]  V. Kreinovich Computational Complexity and Feasibility of Data Processing and Interval Computations , 1997 .

[2]  E. Hansen Interval Arithmetic in Matrix Computations, Part I , 1965 .

[3]  Christian Jansson,et al.  An Algorithm for Checking Regularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..

[4]  Mehdi Dehghan,et al.  Some Computations on Fuzzy Matrices: an Application in Fuzzy Analytical Hierarchy Process , 2008, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[5]  D. Dubois,et al.  Systems of linear fuzzy constraints , 1980 .

[6]  Etienne E. Kerre,et al.  Reasonable properties for the ordering of fuzzy quantities (II) , 2001, Fuzzy Sets Syst..

[7]  Joris De Schutter,et al.  Approximated fuzzy LR computation , 2003, Inf. Sci..

[8]  Alex M. Andrew,et al.  Applied Interval Analysis: With Examples in Parameter and State Estimation, Robust Control and Robotics , 2002 .

[9]  J. Kuttler,et al.  A fourth-order finite-difference approximation for the fixed membrane eigenproblem , 1971 .

[10]  Mehdi Dehghan,et al.  Solution of the fully fuzzy linear systems using iterative techniques , 2007 .

[11]  Myron B. Allen,et al.  Numerical Analysis for Applied Science: Allen/Numerical , 1997 .

[12]  J. Rohn Interval matrices: singularity and real eigenvalues , 1993 .

[13]  Siegfried M. Rump Almost Sharp Bounds for the Componentwise Distance to the Nearest Singular Matrix , 1997 .

[14]  Nehad N. Morsi,et al.  Fuzzy rank of a fuzzy matrix , 1991 .

[15]  Masatoshi Sakawa,et al.  Fuzzy Sets and Interactive Multiobjective Optimization , 1993 .

[16]  Fred W. Roush,et al.  Generalized fuzzy matrices , 1980 .

[17]  J. Rohn Systems of linear interval equations , 1989 .

[18]  Mehdi Dehghan,et al.  Solution of the fully fuzzy linear systems using the decomposition procedure , 2006, Appl. Math. Comput..

[19]  Vladik Kreinovich,et al.  Optimal Finite Characterization of Linear Problems with Inexact Data , 2005, Reliab. Comput..

[20]  Vladik Kreinovich,et al.  Nested Intervals and Sets: Concepts, Relations to Fuzzy Sets, and Applications , 1996 .

[21]  Han Hyuk Cho Regular fuzzy matrices and fuzzy equations , 1999, Fuzzy Sets Syst..

[22]  C. Jansson Calculation of exact bounds for the solution set of linear interval systems , 1997 .

[23]  Robert H. Halstead,et al.  Matrix Computations , 2011, Encyclopedia of Parallel Computing.

[24]  Didier Dubois,et al.  Fuzzy sets and systems ' . Theory and applications , 2007 .

[25]  Laurent El Ghaoui,et al.  Inversion Error, Condition Number, and Approximate Inverses of Uncertain Matrices , 2001 .

[26]  Ronald E. Giachetti,et al.  A parametric representation of fuzzy numbers and their arithmetic operators , 1997, Fuzzy Sets Syst..

[27]  R. B. Kearfott,et al.  Applications of interval computations , 1996 .

[28]  A. Neumaier Interval methods for systems of equations , 1990 .

[29]  D. Dubois,et al.  Operations on fuzzy numbers , 1978 .

[30]  Jiri Rohn,et al.  Sufficient Conditions for Regularity and Singularity of Interval Matrices , 1999, SIAM J. Matrix Anal. Appl..

[31]  H. Hashimoto,et al.  Subinverses of fuzzy matrices , 1984 .

[32]  Michael Wagenknecht,et al.  Computational aspects of fuzzy arithmetics based on Archimedean t-norms , 2001, Fuzzy Sets Syst..

[33]  E. Hansen,et al.  Interval Arithmetic in Matrix Computations, Part II , 1965 .

[34]  Jiri Rohn,et al.  Inverse interval matrix , 1993 .

[35]  Chin-Tzong Pang Simultaneously controllable fuzzy matrices , 2005 .

[36]  J. Buckley,et al.  Solving systems of linear fuzzy equations , 1991 .

[37]  Mehdi Dehghan,et al.  Iterative solution of fuzzy linear systems , 2006, Appl. Math. Comput..

[38]  Mehdi Dehghan,et al.  Determination of the degrees of P-property and nonnegative invertibility for a fuzzy matrix , 2007, Int. J. Approx. Reason..

[39]  Ronald E. Giachetti,et al.  Analysis of the error in the standard approximation used for multiplication of triangular and trapezoidal fuzzy numbers and the development of a new approximation , 1997, Fuzzy Sets Syst..

[40]  James J. Buckley,et al.  Solving fuzzy equations using evolutionary algorithms and neural nets , 2002, Soft Comput..

[41]  Jiri Rohn,et al.  Regularity of Interval Matrices and Theorems of the Alternatives , 2006, Reliab. Comput..

[42]  R. Demarr,et al.  Nonnegative matrices with nonnegative inverses , 1972 .