High Open Circuit Voltage for Perovskite Solar Cells with S,Si-Heteropentacene-Based Hole Conductors

[1]  S. Zakeeruddin,et al.  Donor-Acceptor-Type S,N-Heteroacene-Based Hole-Transporting Materials for Efficient Perovskite Solar Cells. , 2017, ACS applied materials & interfaces.

[2]  Neha Arora,et al.  Perovskite solar cells with CuSCN hole extraction layers yield stabilized efficiencies greater than 20% , 2017, Science.

[3]  A. Subbiah,et al.  One‐step Solution‐Processed Formamidinium Lead Tribromide Formation for Better Reproducible Planar Perovskite Solar Cells , 2017 .

[4]  S. Zakeeruddin,et al.  High photovoltage in perovskite solar cells: New physical insights from the ultrafast transient absorption spectroscopy , 2017 .

[5]  Kenjiro Miyano,et al.  Exploring the effects of interfacial carrier transport layers on device performance and optoelectronic properties of planar perovskite solar cells , 2017 .

[6]  Dong Uk Lee,et al.  Iodide management in formamidinium-lead-halide–based perovskite layers for efficient solar cells , 2017, Science.

[7]  S. Zakeeruddin,et al.  Function Follows Form: Correlation between the Growth and Local Emission of Perovskite Structures and the Performance of Solar Cells , 2017 .

[8]  P. Nair,et al.  Stable p–i–n FAPbBr3 Devices with Improved Efficiency Using Sputtered ZnO as Electron Transport Layer , 2017 .

[9]  Q. Akkerman,et al.  Strongly emissive perovskite nanocrystal inks for high-voltage solar cells , 2016, Nature Energy.

[10]  Liming Ding,et al.  Modified PEDOT Layer Makes a 1.52 V Voc for Perovskite/PCBM Solar Cells , 2017 .

[11]  S. Kazim,et al.  Lochtransportmaterialien für Perowskit‐Solarzellen , 2016 .

[12]  M. Grätzel,et al.  Hole-Transport Materials for Perovskite Solar Cells. , 2016, Angewandte Chemie.

[13]  R. Friend,et al.  Intrinsic and Extrinsic Stability of Formamidinium Lead Bromide Perovskite Solar Cells Yielding High Photovoltage. , 2016, Nano letters.

[14]  S. Meloni,et al.  Origin of unusual bandgap shift and dual emission in organic-inorganic lead halide perovskites , 2016, Science Advances.

[15]  Rebecca A. Belisle,et al.  Minimal Effect of the Hole-Transport Material Ionization Potential on the Open-Circuit Voltage of Perovskite Solar Cells , 2016 .

[16]  Rebecca A. Belisle,et al.  Perovskite-perovskite tandem photovoltaics with optimized band gaps , 2016, Science.

[17]  M. Nazeeruddin,et al.  High Open-Circuit Voltage: Fabrication of Formamidinium Lead Bromide Perovskite Solar Cells Using Fluorene–Dithiophene Derivatives as Hole-Transporting Materials , 2016 .

[18]  M. Grätzel,et al.  Photovoltaic and Amplified Spontaneous Emission Studies of High‐Quality Formamidinium Lead Bromide Perovskite Films , 2016 .

[19]  Ayan A. Zhumekenov,et al.  Formamidinium Lead Halide Perovskite Crystals with Unprecedented Long Carrier Dynamics and Diffusion Length , 2016 .

[20]  Yongbo Yuan,et al.  Correlation of energy disorder and open-circuit voltage in hybrid perovskite solar cells , 2016, Nature Energy.

[21]  M. Grätzel,et al.  Growth Engineering of CH3NH3PbI3 Structures for High‐Efficiency Solar Cells , 2016 .

[22]  M. Grätzel,et al.  Triazatruxene-Based Hole Transporting Materials for Highly Efficient Perovskite Solar Cells. , 2015, Journal of the American Chemical Society.

[23]  Sung Min Cho,et al.  Formamidinium and Cesium Hybridization for Photo‐ and Moisture‐Stable Perovskite Solar Cell , 2015 .

[24]  S. Zakeeruddin,et al.  A–D–A-type S,N-heteropentacene-based hole transport materials for dopant-free perovskite solar cells , 2015 .

[25]  Aron Walsh,et al.  Ionic transport in hybrid lead iodide perovskite solar cells , 2015, Nature Communications.

[26]  Antonio Abate,et al.  Efficient photosynthesis of carbon monoxide from CO2 using perovskite photovoltaics , 2015, Nature Communications.

[27]  Licheng Sun,et al.  Recent Progress on Hole‐Transporting Materials for Emerging Organometal Halide Perovskite Solar Cells , 2015 .

[28]  Dae Ho Song,et al.  Planar CH3NH3PbBr3 Hybrid Solar Cells with 10.4% Power Conversion Efficiency, Fabricated by Controlled Crystallization in the Spin‐Coating Process , 2014, Advanced materials.

[29]  Thomas Bein,et al.  Efficient Planar Heterojunction Perovskite Solar Cells Based on Formamidinium Lead Bromide. , 2014, The journal of physical chemistry letters.

[30]  Sang Il Seok,et al.  Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor , 2014 .

[31]  J. Teuscher,et al.  Unravelling the mechanism of photoinduced charge transfer processes in lead iodide perovskite solar cells , 2014, Nature Photonics.

[32]  David Cahen,et al.  Chloride Inclusion and Hole Transport Material Doping to Improve Methyl Ammonium Lead Bromide Perovskite-Based High Open-Circuit Voltage Solar Cells. , 2014, The journal of physical chemistry letters.

[33]  David Cahen,et al.  High Open-Circuit Voltage Solar Cells Based on Organic-Inorganic Lead Bromide Perovskite. , 2013, The journal of physical chemistry letters.

[34]  J. Teuscher,et al.  Efficient Hybrid Solar Cells Based on Meso-Superstructured Organometal Halide Perovskites , 2012, Science.

[35]  N. Park,et al.  Lead Iodide Perovskite Sensitized All-Solid-State Submicron Thin Film Mesoscopic Solar Cell with Efficiency Exceeding 9% , 2012, Scientific Reports.

[36]  S. Suga,et al.  Synthesis of nitrogen-bridged terthiophenes by tandem Buchwald-Hartwig coupling and their properties. , 2012, Organic letters.

[37]  J. Bloking,et al.  Hole transport materials with low glass transition temperatures and high solubility for application in solid-state dye-sensitized solar cells. , 2012, ACS nano.

[38]  Wei Li,et al.  Electrochemical Considerations for Determining Absolute Frontier Orbital Energy Levels of Conjugated Polymers for Solar Cell Applications , 2011, Advanced materials.

[39]  Tsutomu Miyasaka,et al.  Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. , 2009, Journal of the American Chemical Society.