DEM Simulation Based on Experimental Testing

The paper examines several key aspects of soil morphology, namely experimental and numerical test validation and compression test result dependency on changing morphology parameters. The present chapter describes investigation of soil morpholo‐ gy parameters influence for numerical compression properties with evaluation of examined sand engineering geological conditions. The main objects of research: morphology parameters investigation with view analysis program and scanning electronic microscope; experimental soil compression testing; numerical soil compres‐ sion simulation and results validation with experimental ones. The primary purpose of this paper is therefore to investigate the influence of morphology parameters on sand mechanical properties and to determine optimal quantity of spheres for single‐particle shape subscription.

[1]  Jianhua Yin,et al.  Nonlinear Creep and Swelling Behavior of Bentonite Mixed with Different Sand Contents Under Oedometric Condition , 2011 .

[2]  Ata G. Doven,et al.  Monotonic and cyclic oedometer tests on sand at high stress levels , 2006 .

[3]  P. Marais,et al.  Towards realistic and interactive sand simulation: A GPU-based framework , 2013 .

[4]  I. Cavarretta,et al.  The influence of particle characteristics on the engineering behaviour of granular materials , 2010 .

[5]  Jacek Tejchman,et al.  Numerical Simulations of Triaxial Test with Sand Using DEM , 2009 .

[6]  J. Santamarina,et al.  Closure of "Particle Shape Effects on Packing Density, Stiffness, and Strength: Natural and Crushed Sands" , 2006 .

[7]  Andy Collop,et al.  Discrete Element Modelling of Monotonic Compression Tests in an Idealised Asphalt Mixture , 2009 .

[8]  S. Utili,et al.  DEM Triaxial Tests of a Seabed Sand , 2012 .

[9]  Soheil Mohammadi,et al.  Micromechanics of breakage in sharp-edge particles using combined DEM and FEM , 2008 .

[10]  M. J. Jiang,et al.  Verification of the Double Slip and Rotation Rate Model for Elliptical Granular Flow Using the Distinct Element Method , 2012 .

[11]  Byeongsu Kim,et al.  DEM simulation of collapse behaviours of unsaturated granular materials under general stress states , 2012 .

[12]  Félix Darve,et al.  Numerical simulation of drained triaxial test using 3D discrete element modeling , 2009 .

[13]  D. Markauskas,et al.  Testing and numerical simulation of Holocene marine sand uniaxial compression along the Lithuanian coast , 2014 .

[14]  D. Markauskas,et al.  Testing and numerical simulation of Holocene marine sand uniaxial compression at Lithuanian coast , 2014 .

[15]  Christopher C. Pain,et al.  Coupled FEMDEM/Fluids for coastal engineers with special reference to armour stability and breakage , 2009 .

[16]  Hiroshi Nakashima,et al.  Determining the angle of repose of sand under low-gravity conditions using discrete element method , 2011 .

[17]  Marek Molenda,et al.  Influence of grain shape and intergranular friction on material behavior in uniaxial compression: Experimental and DEM modeling , 2012 .

[18]  Rimantas Kačianauskas,et al.  Simulation of Normal Impact of Ultrafine Silica Particle on Substrate , 2011 .

[19]  Catherine O'Sullivan,et al.  Characterization of artificial spherical particles for DEM validation studies , 2012 .

[20]  Guilhem Mollon,et al.  Generating realistic 3D sand particles using Fourier descriptors , 2013 .

[21]  Rimantas Kačianauskas,et al.  Discrete element method and its application to the analysis of penetration into granular media , 2004 .

[22]  W. C. Krumbein Measurement and geological significance of shape and roundness of sedimentary particles , 1941 .

[23]  A dimensional analysis of scaling viscosity and velocity in DEM of constant strain rate tests on asphalt , 2009 .

[24]  M. Coop,et al.  On the compression behaviour of reconstituted soils , 2012 .

[25]  A. Norkus,et al.  ANALYSIS OF METHODS FOR EVALUATION OF SOIL SHEAR STRENGTH PARAMETERS , 2010 .

[26]  Šarūnas Skuodis,et al.  Partical Shape Evaluation Before and After Compression , 2012 .

[27]  Hai-Sui Yu,et al.  Discrete element modelling of cavity expansion and pressuremeter test , 2013 .

[28]  Tatsunori Matsumoto,et al.  EXPERIMENTAL AND NUMERICAL STUDIES ON PUSH-UP LOAD TESTS FOR SAND PLUGS IN A STEEL PIPE PILE , 2011 .

[29]  Yu Liu,et al.  Three-dimensional discrete element modeling of asphalt concrete: Size effects of elements , 2012 .

[30]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[31]  Daiva Žilionienė,et al.  Comparison study of spherical and multi-spherical particles under cyclic uniaxial compression , 2012 .

[32]  Cesare Comina,et al.  EIT Oedometer : An Advanced Cell to Monitor Spatial and Time Variability in Soil with Electrical and Seismic Measurements , 2008 .

[33]  Y. Ta,et al.  Discrete element simulation of crushable soil , 2003 .

[34]  Guy T. Houlsby,et al.  A Numerical Investigation of Quasi-static Conditions for Granular Media , 2012 .

[35]  Rimantas Kačianauskas,et al.  COMPACTING OF PARTICLES FOR BIAXIAL COMPRESSION TEST BY THE DISCRETE ELEMENT METHOD , 2006 .

[36]  Gvidas Pocius,et al.  SIMULATION OF THE POLY- AND MONODISPERSED GRANULAR MATERIAL. PART II: THE STABILITY STATE CHARACTERIZATION / DAUGIADISPERSIO IR VIENDISPERSIO DALELIŲ MIŠINIO ELGSENOS TYRIMAS. II DALIS: STABILUMO BŪSENŲ CHARAKTERIZAVIMAS , 2012 .

[37]  Jacek Tejchman,et al.  Discrete simulations of shear zone patterning in sand in earth pressure problems of a retaining wall , 2011 .

[38]  W. C. Krumbein,et al.  Stratigraphy and sedimentation , 1963 .

[39]  Colin Thornton,et al.  Effects of Material Properties on Granular Flow in a Silo Using DEM Simulation , 2002 .