Hybrid Technique in SCALE for Fission Source Convergence Applied to Used Nuclear Fuel Analysis

The new hybrid SOURCE ConveRgence accelERator (SOURCERER) sequence in SCALE deterministically computes a fission distribution and uses it as the starting source in a Monte Carlo eigenvalue criticality calculation. In addition to taking the guesswork out of defining an appropriate, problem-dependent starting source, the more accurate starting source provided by the deterministic calculation decreases the probability of producing inaccurate tally estimates associated with undersampling problems caused by inadequate source convergence. Furthermore, SOURCERER can increase the efficiency of the overall simulation by decreasing the number of cycles that has to be skipped before the keff accumulation. SOURCERER was applied to a representative example for a used nuclear fuel cask utilized at the Maine Yankee storage site {Scaglione and Ilas}. Because of the time constraints of the Used Fuel Research, Development, and Demonstration project, it was found that using more than 30,000 neutrons per cycle will lead to inaccurate Monte Carlo calculation of keff due to the inevitable decrease in the number of skipped and active cycles used with this problem. For a fixed uncertainty objective and by using 30,000 neutron per cycle, the use of SOURCERER increased the efficiency of the keff calculation by 60%compared to a Monte Carlo calculation thatmore » used a starting source distributed uniformly in fissionable regions, even with the inclusion of the extra computational time required by the deterministic calculation. Additionally, the use of SOURCERER increased the reliability of keff calculation using any number of skipped cycles below 350.« less