A study on quantum beats of excitons in GaAs/AlGaAs circular cylindrical quantum wires

This paper presents a theoretical investigation of quantum beats of excitons in GaAs/AlGaAs circular cylindrical quantum wires. A three-level model of excitons, including a ground state and two excited states, has been applied to derive the renormalized wavefunctions and the time-dependent absorption intensity of excitons when the system is irradiated by a strong pump laser resonating with the distance between the two excited-levels. Our results show that a periodic oscillation form of the absorption intensity, obvious evidence of the quantum beat behavior, has appeared. Furthermore, the mechanism of the generation, as well as the effects of the wire radius and the pump laser detuning on the frequency (period) and amplitude of quantum beats, have been explained in detail. These results suggest potential applications in the fabrication of some quantum computation devices.

[1]  D. N. Thao,et al.  Quantum beat of excitons in spherical semiconductor quantum dots , 2020 .

[2]  I. I. Zasavitskii,et al.  Advanced AlGaAs/GaAs Heterostructures Grown by MOVPE , 2019, Crystals.

[3]  A. Kemper,et al.  Coherent excitonic quantum beats in time-resolved photoemission measurements , 2019, Physical Review B.

[4]  S. Ridene GaSbBi/GaSb quantum-well and wire laser diodes , 2018, Chemical Physics Letters.

[5]  A. Marini,et al.  An ab-initio approach to describe coherent and non-coherent exciton dynamics , 2018, The European Physical Journal B.

[6]  M. Shayegan,et al.  Observation of fractional quantum Hall effect in an InAs quantum well , 2017, 1712.01220.

[7]  M. Jarrahi,et al.  A polarization-insensitive plasmonic photoconductive terahertz emitter , 2017, AIP advances.

[8]  N. Quang,et al.  A theoretical study of the optical Stark effect in InGaAs/InAlAs quantum dots , 2017 .

[9]  K. Ghosh,et al.  Choice of quantum dot materials for fabricating memory devices with longer storage and faster writing of information , 2016 .

[10]  M. Chan,et al.  Tunneling Field Effect Transistor Technology , 2016 .

[11]  A. Kavokin,et al.  Multiple-frequency quantum beats of quantum confined exciton states , 2015 .

[12]  A. Kavokin,et al.  Multiple quantum beats of quantum confined exciton states in InGaAs/GaAs quantum well , 2015, 1507.04198.

[13]  M. Ersoz,et al.  Biocompatible multi-walled carbon nanotube–CdTe quantum dot–polymer hybrids for medical applications , 2015 .

[14]  J. Keaveney,et al.  Probing an excited-state atomic transition using hyperfine quantum-beat spectroscopy , 2014, 1408.3506.

[15]  K. Akahane,et al.  Generation of undamped exciton-biexciton beats in InAs quantum dots using six-wave mixing , 2014 .

[16]  S. Figge,et al.  Colour and multicolour tuning of InGaN quantum dot based light-emitting diodes , 2014 .

[17]  Harald Schneider,et al.  Large area photoconductive terahertz emitter for 1.55 μm excitation based on an InGaAs heterostructure , 2013, Nanotechnology.

[18]  J. Brault,et al.  Ultra-violet GaN/Al0.5Ga0.5N quantum dot based light emitting diodes , 2013 .

[19]  R. Taranko,et al.  Quantum wire as a charge-qubit detector , 2012 .

[20]  E. Sargent,et al.  Quantum beats due to excitonic ground-state splitting in colloidal quantum dots , 2012 .

[21]  M. Nakayama,et al.  Quantum beats of type-I and type-II excitons in an InxGa1−xAs/GaAs strained single quantum well , 2012 .

[22]  C. Heyn,et al.  Excitonic lifetimes in single GaAs quantum dots fabricated by local droplet etching , 2012 .

[23]  K. Blum Radiation from Polarized Atoms. Quantum Beats , 2012 .

[24]  P. Holloway,et al.  Stable and efficient quantum-dot light-emitting diodes based on solution-processed multilayer structures , 2011 .

[25]  Y. Kawamura InP-based InGaAsSbN quantum well laser diodes in the 2-μm wavelength region , 2011 .

[26]  Zeng-Ru Zhao,et al.  Phonon Effect on Exciton Binding Energies in Cylindrical Quantum Wires in the Presence of an Electric Field , 2011 .

[27]  G. Refael,et al.  Non-Abelian statistics and topological quantum information processing in 1D wire networks , 2010, 1006.4395.

[28]  J. Eymery,et al.  Single-Wire Light-Emitting Diodes Based on GaN Wires Containing Both Polar and Nonpolar InGaN/GaN Quantum Wells , 2011 .

[29]  F. Schürrer,et al.  ELECTRON TRANSPORT IN SILICON QUANTUM WIRE DEVICES , 2009 .

[30]  Iwao Kanno,et al.  Designing quantum-dot probes , 2007 .

[31]  J. Fitzsimons,et al.  Globally controlled quantum wires for perfect qubit transport, mirroring, and computing. , 2006, Physical review letters.

[32]  Rebekah Drezek,et al.  Protease-activated quantum dot probes. , 2005, Biochemical and biophysical research communications.

[33]  J. Bloch,et al.  Short radiative lifetime of single GaAs quantum dots , 2005 .

[34]  K. Esfarjani,et al.  Spin filtering and spin diode devices in quantum wire systems , 2005 .

[35]  Y. Masumoto,et al.  Quantum beats in semiconductor quantum dots , 2004 .

[36]  M. Nakayama,et al.  Enhancement of coherent LO phonons by quantum beats of excitons in GaAs/AlAs multiple quantum wells , 2004 .

[37]  H. Ren,et al.  Luminescence quantum beats of strain-induced GaAs quantum dots , 2003 .

[38]  G. Ibragimov Alloy‐disorder‐scattering‐limited mobility of electrons in cylindrical quantum well wires , 2003 .

[39]  T. Kobzeva,et al.  Application of the Quantum Beats Method to the Determination of the Electron-Transfer Radius in Nonpolar Solvents , 2002 .

[40]  J. Huber,et al.  Quantum beat spectroscopy in chemistry , 2000 .

[41]  T. Ishihara,et al.  Exciton lifetime in quantum well with vicinal high-density excitons , 2000 .

[42]  N. Hurt Mathematical Physics of Quantum Wires and Devices , 2000 .

[43]  A. Bobrysheva,et al.  Optical exciton Stark effect and quantum beats at exciton quasienergy levels in quantum wells , 1997 .

[44]  A. Bobrysheva,et al.  Quantum beats of excitons in Cu2O at double optical resonance , 1997 .

[45]  M. Koch,et al.  Excitonic quantum beats in semiconductor quantum-well structures , 1996 .

[46]  Geir U. Jensen,et al.  Analytical charge control model for GaAs/AlGaAs‐based multiple‐quantum‐well power hemts , 1996 .

[47]  H. Sitter,et al.  Quantum beats of excitons in Zn1−xCdxSe/ZnSe multiple quantum well structures , 1995 .

[48]  Wlodzimierz Nakwaski,et al.  Effective masses of electrons and heavy holes in GaAs, InAs, A1As and their ternary compounds , 1995 .

[49]  S. Pratt,et al.  Observation of hyperfine quantum beats in two-color laser-induced grating spectroscopy of nitric oxide , 1994 .

[50]  West,et al.  Radiative lifetimes of excitons in quantum wires. , 1994, Physical review. B, Condensed matter.

[51]  M. Koch,et al.  Determination of excitonic binding energies in symmetrically strained (GaIn)As/Ga(AsP) multiple quantum wells using quantum beat spectroscopy , 1994 .

[52]  S. Tsukamoto,et al.  Exciton radiative lifetime in GaAs quantum wires grown by metalorganic chemical-vapor selective growth , 1994 .

[53]  Lei,et al.  Polar-optic phonons and high-field electron transport in cylindrical GaAs/AlAs quantum wires. , 1994, Physical review. B, Condensed matter.

[54]  J. Hvam,et al.  Nonlinear quantum beats of excitons in CdSe , 1992 .

[55]  T. George,et al.  Theoretical study of phase-shifted quantum beats in time-resolved luminescence spectra from a biased asymmetric double quantum well , 1992 .

[56]  H. Stolz,et al.  Quantum beat spectroscopy: a new tool to study phase relaxation of excitons , 1992 .

[57]  Ray,et al.  Energy relaxation of hot two-dimensional excitons in a GaAs quantum well by exciton-phonon interaction. , 1992, Physical review. B, Condensed matter.

[58]  Leo,et al.  Coherent oscillations of a wave packet in a semiconductor double-quantum-well structure. , 1991, Physical review letters.

[59]  J. Huber,et al.  Molecular quantum beat spectroscopy , 1990 .

[60]  K. Ploog,et al.  Quantum beats between the light and heavy hole excitons in a quantum well , 1990 .

[61]  A. Gaupp,et al.  Fine structure measurements at the n = 2 state of hydrogen with the quantum beat method , 1973 .