Efficient upscaling of hydraulic conductivity in heterogeneous alluvial aquifers

An efficient method to upscale hydraulic conductivity (K) from detailed three-dimensional geostatistical models of hydrofacies heterogeneity to a coarser model grid is presented. Geologic heterogeneity of an alluvial fan system was characterized using transition-probability-based geostatistical simulations of hydrofacies distributions. For comparison of different hydrofacies architecture, two alternative models with different hydrofacies structures and geometries and a multi-Gaussian model, all with the same mean and variance in K, were created. Upscaling was performed on five realizations of each of the geostatistical models using the arithmetic and harmonic means of the K-values within vertical grid columns. The effects of upscaling on model domain equivalent K were investigated by means of steady-state flow simulations. A logarithmic increase in model domain equivalent K with increasing upscaling, was found for all fields. The shape of that upscaling function depended on the structure and geometry of the hydrofacies bodies. For different realizations of one geostatistical model, however, the upscaling function was the same. From the upscaling function a factor could be calculated to correct the upscaled K-fields for the local effects of upscaling.RésuméUne méthode efficace pour upscale la conductivité hydraulique (K) à partir de modèles géostatistiques 3D détaillés de l’hétérogénéité d’hydrofaciès vers un maillage de modèle plus grossier est présentée. L’hétérogénéité géologique d’un système de cône alluvial a été caractérisée en utilisant des simulations géostatistiques basées sur une probabilité d’évolution des distributions d’hydrofaciès. Pour comparer plusieurs compositions d’hydrofaciès deux modèles alternatifs avec des structures d’hydrofaciès et des géométries différentes et un modèle Gaussien multiple, tous avec la même moyenne et variance de K, ont été créés. L’upscaling a été réalisé sur cinq mises en œuvre de chacun des modèles géostatistiques en utilisant les moyennes arithmétiques et harmoniques des valeurs K au sein de colonnes verticales du maillage. Les effets de l’upscaling de l’équivalent K dans le domaine du modèle ont été étudiés au moyen de simulations en écoulement permanent. Un accroissement logarithmique de l’équivalent K dans le domaine du modèle avec un upscaling croissant, a été trouvé pour tous les domaines. La forme de cette fonction d’upscaling dépendait de la structure et de la géométrie des ensembles d’hydrofaciès. Pour différentes mises en œuvre d’un modèle géostatistique, toutefois, la fonction d’upscaling était la même. A partir de la fonction d’upscaling un facteur peut être calculé pour corriger les domaines de K upscaled des effets locaux de l’upscaling.ResumenSe presenta un método eficiente para el sobre-escalado de la conductividad hidráulica (K) a partir de modelos geoestadísticos tridimensionales de heterogeneidades de hidrofacies a modelos con grillas de mayor escala. La heterogeneidad geológica de un abanico aluvial se caracterizó usando probabilidad de transición basada en simulaciones de la distribución de las hidrofacies. Para la comparación de la arquitectura de las distintas hidrofacies, se crearon dos modelos alternativos con diferentes estructuras y geometrías de las hidrofacies y un modelo multi-gaussiano, con la misma media y varianza de K. El sobre-escalado se logró con cinco realizaciones de cada modelo geoestadístico usando las medias aritmética y armónica de los valores de K en cada columna vertical de la grilla. Los efectos del sobre-escalado se investigaron con simulaciones del flujo en estado estacionario. Se halló que un incremento en el sobre-escalado produce un incremento logarítmico en el dominio del modelo con K equivalente. La forma de la función de sobre-escalado depende de la estructura y geometría de los cuerpos de hidrofacies. Sin embargo, para diferentes realizaciones de un dado modelo geoestadístico, la función de sobre-escalado fue la misma. Esa función de sobre-escalado permite calcular un factor que corrige los campos de K sobre-escalados por efectos locales del sobre-escalado.

[1]  Graham E. Fogg,et al.  Multi-scale alluvial fan heterogeneity modeled with transition probability geostatistics in a sequence stratigraphic framework , 1999 .

[2]  Daniel M. Tartakovsky,et al.  Effective Properties of Random Composites , 2004, SIAM J. Sci. Comput..

[3]  Carl W. Gable,et al.  Representative hydraulic conductivity of hydrogeologic units: Insights from an experimental stratigraphy , 2007 .

[4]  Daniel M. Tartakovsky,et al.  Transient effective hydraulic conductivities under slowly and rapidly varying mean gradients in bounded three‐dimensional random media , 1998 .

[5]  G. Dagan,et al.  Flow and transport through two-dimensional isotropic media of binary conductivity distribution. Part 1: NUMERICAL methodology and semi-analytical solutions , 2003 .

[6]  G. Fogg,et al.  Transition probability-based indicator geostatistics , 1996 .

[7]  R. Grayson,et al.  Toward capturing hydrologically significant connectivity in spatial patterns , 2001 .

[8]  L. Durlofsky,et al.  Use of Border Regions for Improved Permeability Upscaling , 2003 .

[9]  Chin-Fu Tsang,et al.  A self‐consistent approach for calculating the effective hydraulic conductivity of a binary, heterogeneous medium , 2004 .

[10]  Steven F. Carle,et al.  Analysis of groundwater migration from artificial recharge in a large urban aquifer: A simulation perspective , 1999 .

[11]  Jesús Carrera,et al.  Binary upscaling—the role of connectivity and a new formula , 2006 .

[12]  Clayton V. Deutsch,et al.  Power Averaging for Block Effective Permeability , 1986 .

[13]  S. Gorelick,et al.  Heterogeneity in Sedimentary Deposits: A Review of Structure‐Imitating, Process‐Imitating, and Descriptive Approaches , 1996 .

[14]  Günter Blöschl,et al.  How well do indicator variograms capture the spatial connectivity of soil moisture , 1998 .

[15]  Daniel M. Tartakovsky,et al.  Effective Hydraulic Conductivity of Bounded, Strongly Heterogeneous Porous Media , 1996 .

[16]  J. Gómez-Hernández,et al.  Upscaling hydraulic conductivities in heterogeneous media: An overview , 1996 .

[17]  Charles F. Harvey,et al.  When good statistical models of aquifer heterogeneity go bad: A comparison of flow, dispersion, and mass transfer in connected and multivariate Gaussian hydraulic conductivity fields , 2003 .

[18]  Timothy T. Eaton,et al.  On the importance of geological heterogeneity for flow simulation , 2006 .

[19]  Allan L. Gutjahr,et al.  Cross‐correlated random field generation with the direct Fourier Transform Method , 1993 .

[20]  Aldo Fiori,et al.  Effective Conductivity of an Isotropic Heterogeneous Medium of Lognormal Conductivity Distribution , 2003, Multiscale Model. Simul..

[21]  G. Fogg,et al.  Dispersion of groundwater age in an alluvial aquifer system , 2002 .

[22]  L. Durlofsky,et al.  A coupled local-global upscaling approach for simulating flow in highly heterogeneous formations , 2003 .

[23]  E. Webb Simulation of Braided Channel Topology and Topography , 1995 .

[24]  Steven M. Gorelick,et al.  Effective groundwater model parameter values: Influence of spatial variability of hydraulic conductivity, leakance, and recharge , 1989 .

[25]  R. Ababou,et al.  Numerical simulation of three-dimensional saturated flow in randomly heterogeneous porous media , 1989 .

[26]  Yong Zhang,et al.  Upscaling conductivity and porosity in three-dimensional heterogeneous porous media , 2004 .

[27]  Steven F. Carle,et al.  Geologic heterogeneity and a comparison of two geostatistical models: Sequential Gaussian and transition probability-based geostatistical simulation , 2007 .

[28]  Graham E. Fogg,et al.  Geostatistical Modeling of Heterogeneity in Glaciofluvial, Buried-Valley Aquifers , 1994 .

[29]  G. Fogg,et al.  Modeling Spatial Variability with One and Multidimensional Continuous-Lag Markov Chains , 1997 .

[30]  P. Indelman,et al.  Transient well‐type flows in heterogenous formations , 2003 .

[31]  A. J. Desbarats,et al.  Spatial averaging of hydraulic conductivity under radial flow conditions , 1994 .

[32]  Steven F. Carle,et al.  Connected-network paradigm for the alluvial aquifer system , 2000 .

[33]  Philippe Renard,et al.  A fast algorithm for the estimation of the equivalent hydraulic conductivity of heterogeneous media , 2000 .

[34]  G. de Marsily,et al.  Some current methods to represent the heterogeneity of natural media in hydrogeology , 1998 .

[35]  Y. Rubin Flow and Transport in Bimodal Heterogeneous Formations , 1995 .

[36]  Carl W. Gable,et al.  Equivalent hydraulic conductivity of an experimental stratigraphy: Implications for basin‐scale flow simulations , 2006 .

[37]  Benoît Nœtinger,et al.  The future of stochastic and upscaling methods in hydrogeology , 2005 .

[38]  Conditional simulation of geologically averaged block permeabilities , 1996 .

[39]  Gedeon Dagan,et al.  Subsurface flow and transport : a stochastic approach , 1997 .

[40]  Arlen W. Harbaugh,et al.  A modular three-dimensional finite-difference ground-water flow model , 1984 .

[41]  John H. Cushman,et al.  A primer on upscaling tools for porous media , 2002 .

[42]  Graham E Fogg,et al.  River‐Aquifer Interactions, Geologic Heterogeneity, and Low‐Flow Management , 2006, Ground water.

[43]  Graham E. Fogg,et al.  Groundwater Flow and Sand Body Interconnectedness in a Thick, Multiple-Aquifer System , 1986 .

[44]  T. Harter Finite-size scaling analysis of percolation in three-dimensional correlated binary Markov chain random fields. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[45]  Vittorio Di Federico,et al.  Multifaceted nature of hydrogeologic scaling and its interpretation , 2003 .

[46]  P. Renard,et al.  Calculating equivalent permeability: a review , 1997 .

[47]  Jesús Carrera,et al.  On the relationship between indicators of geostatistical, flow and transport connectivity , 2005 .

[48]  Mary P. Anderson,et al.  Simulation of Preferential Flow in Three-Dimensional, Heterogeneous Conductivity Fields with Realistic Internal Architecture , 1996 .

[49]  Timothy D. Scheibe,et al.  Scaling of flow and transport behavior in heterogeneous groundwater systems , 1998 .

[50]  P. Renard,et al.  Dealing with spatial heterogeneity , 2005 .

[51]  X. Sanchez‐Vila,et al.  Representative hydraulic conductivities in saturated groundwater flow , 2006 .

[52]  Arlen W. Harbaugh,et al.  MODFLOW-2000, The U.S. Geological Survey Modular Ground-Water Model - User Guide to Modularization Concepts and the Ground-Water Flow Process , 2000 .

[53]  Clayton V. Deutsch,et al.  GSLIB: Geostatistical Software Library and User's Guide , 1993 .

[54]  Steven F. Carle,et al.  CONDITIONAL SIMULATION OF HYDROFACIES ARCHITECTURE: A TRANSITION PROBABILITY/MARKOV APPROACH1 , 1998 .

[55]  Gedeon Dagan,et al.  Effective, Equivalent, and Apparent Properties of Heterogeneous Media , 2001 .

[56]  Louis J. Durlofsky,et al.  Efficient 3D Implementation of Local-Global Upscaling for Reservoir Simulation , 2006 .

[57]  Riccardo Bersezio,et al.  Modeling heterogeneity of gravel-sand, braided stream, alluvial aquifers at the facies scale , 2006 .

[58]  Graham E. Fogg,et al.  Role of Molecular Diffusion in Contaminant Migration and Recovery in an Alluvial Aquifer System , 2001 .