Convergence, Stability, and Robustness of Multidimensional Opinion Dynamics in Continuous Time

We analyze a continuous time multidimensional opinion model where agents have heterogeneous but symmetric and compactly supported interaction functions. We consider Filippov solutions of the resulting dynamics and show strong Lyapunov stability of all equilibria in the relative interior of the set of equilibria. We investigate robustness of equilibria when a new agent with arbitrarily small weight is introduced to the system in equilibrium. Assuming the interaction functions to be indicators, we provide a necessary condition and a sufficient condition for robustness of the equilibria. Our necessary condition coincides with the necessary and sufficient condition obtained by Blondel et al. for one dimensional opinions.

[1]  Rainer Hegselmann,et al.  Opinion dynamics and bounded confidence: models, analysis and simulation , 2002, J. Artif. Soc. Soc. Simul..

[2]  Takeshi Taniguchi,et al.  Global existence of solutions of differential inclusions , 1992 .

[3]  J. P. Lasalle The stability of dynamical systems , 1976 .

[4]  Julien M. Hendrickx,et al.  Graphs and networks for the analysis of autonomous agent systems , 2008 .

[5]  Paolo Frasca,et al.  Continuous and discontinuous opinion dynamics with bounded confidence , 2012 .

[6]  Luca Dieci,et al.  Sliding Motion in Filippov Differential Systems: Theoretical Results and a Computational Approach , 2009, SIAM J. Numer. Anal..

[7]  Jan Lorenz,et al.  A stabilization theorem for dynamics of continuous opinions , 2005, 0708.2981.

[8]  J.N. Tsitsiklis,et al.  Convergence in Multiagent Coordination, Consensus, and Flocking , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[9]  John N. Tsitsiklis,et al.  On the 2R conjecture for multi-agent systems , 2007, 2007 European Control Conference (ECC).

[10]  J. Cortés Discontinuous dynamical systems , 2008, IEEE Control Systems.

[11]  John N. Tsitsiklis,et al.  Convergence of Type-Symmetric and Cut-Balanced Consensus Seeking Systems , 2011, IEEE Transactions on Automatic Control.

[12]  P Mishra Семантические особенности английского глагола meet , 2012 .

[13]  U. Krause A DISCRETE NONLINEAR AND NON–AUTONOMOUS MODEL OF CONSENSUS FORMATION , 2007 .

[14]  L. Perko Differential Equations and Dynamical Systems , 1991 .

[15]  C. Canuto,et al.  A Eulerian approach to the analysis of rendez-vous algorithms , 2008 .

[16]  Guillaume Deffuant,et al.  Meet, discuss, and segregate! , 2002, Complex..

[17]  Sébastien Motsch,et al.  Heterophilious Dynamics Enhances Consensus , 2013, SIAM Rev..

[18]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[19]  John N. Tsitsiklis,et al.  On Krause's Multi-Agent Consensus Model With State-Dependent Connectivity , 2008, IEEE Transactions on Automatic Control.

[20]  Charalambos D. Aliprantis,et al.  Principles of Real Analysis , 1981 .

[21]  Pierre-Emmanuel Jabin,et al.  Clustering and asymptotic behavior in opinion formation , 2014 .

[22]  Miroslaw Lachowicz,et al.  Modeling opinion dynamics: How the network enhances consensus , 2015, Networks Heterog. Media.

[23]  Jan Lorenz,et al.  Continuous opinion dynamics of multidimensional allocation problems under bounded confidence: More dimensions lead to better chances for consensus , 2007, 0708.2923.

[24]  Jan Lorenz,et al.  Continuous Opinion Dynamics under Bounded Confidence: A Survey , 2007, 0707.1762.

[25]  Tamer Basar,et al.  Termination time of multidimensional Hegselmann-Krause opinion dynamics , 2013, 2013 American Control Conference.

[26]  J. Tsitsiklis,et al.  Existence and uniqueness of solutions for a continuous-time opinion dynamics model with state-dependent connectivity , 2009 .

[27]  Luc Moreau,et al.  Stability of multiagent systems with time-dependent communication links , 2005, IEEE Transactions on Automatic Control.

[28]  Claudio Canuto,et al.  An Eulerian Approach to the Analysis of Krause's Consensus Models , 2012, SIAM J. Control. Optim..

[29]  Francesco Bullo,et al.  Opinion Dynamics in Heterogeneous Networks: Convergence Conjectures and Theorems , 2011, SIAM J. Control. Optim..

[30]  Behrouz Touri,et al.  Multi-dimensional Hegselmann-Krause dynamics , 2012, 2012 IEEE 51st IEEE Conference on Decision and Control (CDC).

[31]  Gerard Weisbuch Bounded confidence and social networks , 2004 .

[32]  John N. Tsitsiklis,et al.  Continuous-Time Average-Preserving Opinion Dynamics with Opinion-Dependent Communications , 2009, SIAM J. Control. Optim..

[33]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[34]  Tamer Basar,et al.  Game-Theoretic Analysis of the Hegselmann-Krause Model for Opinion Dynamics in Finite Dimensions , 2014, IEEE Transactions on Automatic Control.

[35]  J. Aubin,et al.  Differential inclusions set-valued maps and viability theory , 1984 .

[36]  Julien M. Hendrickx,et al.  On Symmetric Continuum Opinion Dynamics , 2013, SIAM J. Control. Optim..