On the Topology and Visualization of Plane Algebraic Curves

In this paper, we present a symbolic algorithm to compute the topology of a plane curve. The algorithm mainly involves resultant computations and real root isolation for univariate polynomials. The novelty of this paper is that we use a technique of interval polynomials to solve the system $\big\{f\alpha,\,y=\frac{\partial f}{\partial y}\alpha,\,y=0\big\}$ and at the same time, get the simple roots of fα, y=0 on the α fiber. It greatly improves the efficiency of the lifting step since we need not compute the simple roots of fα, y=0 any more. After the topology is computed, we use a revised Newton's method to compute the visualization of the plane algebraic curve. We ensure that the meshing is topologically correct. Many nontrivial examples show our implementation works well.

[1]  George E. Collins,et al.  Cylindrical Algebraic Decomposition I: The Basic Algorithm , 1984, SIAM J. Comput..

[2]  George E. Collins,et al.  Cylindrical Algebraic Decomposition II: An Adjacency Algorithm for the Plane , 1984, SIAM J. Comput..

[3]  R. Baker Kearfott,et al.  Introduction to Interval Analysis , 2009 .

[4]  P. Zimmermann,et al.  Efficient isolation of polynomial's real roots , 2004 .

[5]  George E. Collins,et al.  An Adjacency Algorithm for Cylindrical Algebraic Decompositions of Three-Dimensional Space , 1988, J. Symb. Comput..

[6]  George E. Collins,et al.  Local Box Adjacency Algorithms for Cylindrical Algebraic Decompositions , 2002, J. Symb. Comput..

[7]  Josef Schicho,et al.  A delineability-based method for computing critical sets of algebraic surfaces , 2007, J. Symb. Comput..

[8]  Ralph R. Martin,et al.  Comparison of interval methods for plotting algebraic curves , 2002, Comput. Aided Geom. Des..

[9]  Michael Kerber,et al.  Exact and efficient 2D-arrangements of arbitrary algebraic curves , 2008, SODA '08.

[10]  Gert Vegter,et al.  Isotopic meshing of implicit surfaces , 2006, The Visual Computer.

[11]  Abel J. P. Gomes,et al.  A BSP-based algorithm for dimensionally nonhomogeneous planar implicit curves with topological guarantees , 2009, TOGS.

[12]  Scott McCallum,et al.  A Polynomial-Time Algorithm for the Topological Type of a Real Algebraic Curve , 1984, J. Symb. Comput..

[13]  William Fulton,et al.  Introduction to Intersection Theory in Algebraic Geometry , 1984 .

[14]  Oliver Labs A List of Challenges for Real Algebraic Plane Curve Visualization Software , 2009 .

[15]  Laureano González-Vega,et al.  Efficient topology determination of implicitly defined algebraic plane curves , 2002, Comput. Aided Geom. Des..

[16]  Daniel Lazard CAD and Topology of Semi-Algebraic Sets , 2010, Math. Comput. Sci..

[17]  Michael Sagraloff,et al.  A worst-case bound for topology computation of algebraic curves , 2011, J. Symb. Comput..

[18]  T. Sakkalis The topological configuration of a real algebraic curve , 1991, Bulletin of the Australian Mathematical Society.

[19]  Xiao-Shan Gao,et al.  Rational quadratic approximation to real algebraic curves , 2004, Comput. Aided Geom. Des..

[20]  Raimund Seidel,et al.  On the exact computation of the topology of real algebraic curves , 2005, SCG.

[21]  Tien-Yien Li Numerical Solution of Polynomial Systems by Homotopy Continuation Methods , 2003 .

[22]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[23]  H. Hong An efficient method for analyzing the topology of plane real algebraic curves , 1996 .

[24]  Anton Leykin,et al.  Robust Certified Numerical Homotopy Tracking , 2011, Foundations of Computational Mathematics.

[25]  Bernard Mourrain,et al.  Topology and arrangement computation of semi-algebraic planar curves , 2008, Comput. Aided Geom. Des..

[26]  Kai Jin,et al.  A generic position based method for real root isolation of zero-dimensional polynomial systems , 2013, J. Symb. Comput..

[27]  Tamal K. Dey,et al.  Sampling and meshing a surface with guaranteed topology and geometry , 2004, SCG '04.

[28]  Alkiviadis G. Akritas,et al.  Polynomial real root isolation using Descarte's rule of signs , 1976, SYMSAC '76.

[29]  Xiao-Shan Gao,et al.  Topology determination and isolation for implicit plane curves , 2009, SAC '09.

[30]  Jon G. Rokne,et al.  Scci-hybrid Methods for 2d Curve Tracing , 2005, Int. J. Image Graph..

[31]  Fabrice Rouillier,et al.  On the Topology of Real Algebraic Plane Curves , 2010, Math. Comput. Sci..

[32]  Lyle Noakes,et al.  Cumulative chords,Piecewise-Quadratics and Piecewise-cubics , 2006 .

[33]  Alkiviadis G. Akritas,et al.  An implementation of Vincent's theorem , 1980 .

[34]  B. Mourrain,et al.  Algebraic Issues in Computational Geometry , 2006 .

[35]  Chee-Keng Yap,et al.  Complete subdivision algorithms, II: isotopic meshing of singular algebraic curves , 2008, ISSAC '08.

[36]  Michael Sagraloff,et al.  Arrangement computation for planar algebraic curves , 2011, SNC '11.

[37]  S. Basu,et al.  Algorithms in real algebraic geometry , 2003 .

[38]  Boris I. Kvasov,et al.  Methods of Shape-Preserving Spline Approximation , 2000 .

[39]  Michael Kerber,et al.  Geometric algorithms for algebraic curves and surfaces , 2009 .

[40]  Michael Kerber,et al.  Fast and exact geometric analysis of real algebraic plane curves , 2007, ISSAC '07.