The (P, Q)-(skew)symmetric extremal rank solutions to a system of quaternion matrix equations

Abstract Let H m × n denote the set of all m × n matrices over the quaternion algebra H and P ∈ H m × m , Q ∈ H n × n be involutions. We say that A ∈ H m × n is (P, Q)-symmetric (or (P, Q)-skewsymmetric) if A = PAQ (or A = − PAQ). We in this paper mainly investigate the (P, Q)-(skew)symmetric maximal and minimal rank solutions to the system of quaternion matrix equations AX = B, XC = D. We present necessary and sufficient conditions for the existence of the maximal and minimal rank solutions with (P, Q)-symmetry and (P, Q)-skewsymmetry to the system. The expressions of such solutions to this system are also given when the solvability conditions are satisfied. A numerical example is presented to illustrate our results. The findings of this paper extend some known results in this literature.

[1]  Qing-Wen Wang,et al.  Bisymmetric and centrosymmetric solutions to systems of real quaternion matrix equations , 2005 .

[2]  Hsin-Chu Chen Generalized Reflexive Matrices: Special Properties and Applications , 1998, SIAM J. Matrix Anal. Appl..

[3]  Xi-Yan Hu,et al.  The reflexive and anti-reflexive solutions of the matrix equation AX = B , 2003 .

[4]  S. Leo,et al.  Right eigenvalue equation in quaternionic quantum mechanics , 2000, math-ph/0002051.

[5]  Donald G. Saari,et al.  Unsettling aspects of voting theory , 2003 .

[6]  Junfeng Lu,et al.  The matrix equations AX=B, XC=F with PX=sXP constraint , 2007, Appl. Math. Comput..

[7]  Hsin-Chu Chen,et al.  The SAS Domain Decomposition Method for Structural Analysis , 1988 .

[8]  C. Eddie Moxey,et al.  Hypercomplex correlation techniques for vector images , 2003, IEEE Trans. Signal Process..

[9]  S. Mitra The matrix equations AX = C, XB = D , 1984 .

[10]  Qingwen Wang The general solution to a system of real quaternion matrix equations , 2005 .

[11]  Yongge Tian,et al.  The maximal and minimal ranks of A − BXC with applications , 2003 .

[12]  Nicolas Le Bihan,et al.  Quaternion singular value decomposition based on bidiagonalization to a real or complex matrix using quaternion Householder transformations , 2006, Appl. Math. Comput..

[13]  F. Uhlig On the matrix equation AX=B with applications to the generators of a controllability matrix , 1987 .

[14]  Simo Puntanen,et al.  Two matrix-based proofs that the linear estimator Gy is the best linear unbiased estimator , 2000 .

[15]  Stephen J. Sangwine,et al.  Color image decomposition using quaternion singular value decomposition , 2003 .

[16]  William F. Trench,et al.  Minimization problems for (R,S)-symmetric and (R,S)-skew symmetric matrices , 2004 .

[17]  Zhang Lei,et al.  The Generalized Reflexive Solution for a Class of Matrix Equations (AX=B, XC=D) , 2008 .

[18]  Lei Zhang,et al.  THE SYMMETRIC MINIMAL RANK SOLUTION OF THE MATRIX EQUATION AX = B AND THE OPTIMAL APPROXIMATION ∗ , 2009 .

[19]  Sujit Kumar Mitra,et al.  Fixed rank solutions of linear matrix equations , 1972 .

[20]  Nicolas Le Bihan,et al.  Singular value decomposition of quaternion matrices: a new tool for vector-sensor signal processing , 2004, Signal Process..

[21]  Qing-Wen Wang,et al.  Extremal ranks of a quaternion matrix expression subject to consistent systems of quaternion matrix equations with applications , 2006, Appl. Math. Comput..

[22]  W. F. Trench,et al.  Inverse Eigenproblems and Associated Approximation Problems for Matrices with Generalized Symmetry or Skew Symmetry , 2003 .

[23]  Qing-Wen Wang,et al.  P-(skew)symmetric common solutions to a pair of quaternion matrix equations , 2008, Appl. Math. Comput..

[24]  Daniel W. C. Ho,et al.  Regularization of Singular Systems by Derivative and Proportional Output Feedback , 1998, SIAM J. Matrix Anal. Appl..

[25]  Nancy Nichols,et al.  Minimum norm regularization of descriptor systems by mixed output feedback , 1999 .

[26]  Yongge Tian,et al.  PARTIALLY SUPERFLUOUS OBSERVATIONS , 2006, Econometric Theory.

[27]  S. Sangwine,et al.  Vector phase correlation , 2001 .

[28]  Fuzhen Zhang Quaternions and matrices of quaternions , 1997 .

[29]  D. Farenick,et al.  The spectral theorem in quaternions , 2003 .

[30]  Douglas P. Wiens,et al.  On equality and proportionality of ordinary least squares, weighted least squares and best linear unbiased estimators in the general linear model , 2006 .

[31]  J. K. Baksalary,et al.  Nonnegative definite and positive definite solutions to the matrix equation AXA * = B , 1984 .

[32]  Sujit Kumar Mitra,et al.  A pair of simultaneous linear matrix equations A1XB1 = C1, A2XB2 = C2 and a matrix programming problem , 1990 .