The Boltzmann-Sinai Ergodic Hypothesis in Two Dimensions (Without Exceptional Models)

We consider the system of $N$ ($\ge2$) elastically colliding hard balls of masses $m_1,...,m_N$ and radius $r$ in the flat unit torus $\Bbb T^\nu$, $\nu\ge2$. In the case $\nu=2$ we prove (the full hyperbolicity and) the ergodicity of such systems for every selection $(m_1,...,m_N;r)$ of the external geometric parameters, without exceptional values. In higher dimensions, for hard ball systems in $\Bbb T^\nu$ ($\nu\ge3$), we prove that every such system (is fully hyperbolic and) has open ergodic components.

[1]  D. Szász The K-property of “orthogonal” cylindric billiards , 1994 .

[2]  Anatole Katok,et al.  Invariant Manifolds, Entropy and Billiards: Smooth Maps With Singularities , 1986 .

[3]  W. Browder,et al.  Annals of Mathematics , 1889 .

[4]  Nándor Simányi,et al.  The K-property ofN billiard balls I , 1992 .

[5]  N. D. Sz Hard ball systems are completely hyperbolic , 1999 .

[6]  L. Vaserstein On systems of particles with finite-range and/or repulsive interactions , 1979 .

[7]  D. Szász,et al.  Non-integrability of cylindric billiards and transitive Lie group actions , 2000, Ergodic Theory and Dynamical Systems.

[8]  N. Chernov,et al.  Multi-Dimensional Semi-Dispersing Billiards: Singularities and the Fundamental Theorem , 2002 .

[9]  Hard ball systems are completely hyperbolic , 1997, math/9704229.

[10]  Dmitry Burago,et al.  Uniform estimates on the number of collisions in semi-dispersing billiards , 1998 .

[11]  Proof of the Boltzmann-Sinai ergodic hypothesis for typical hard disk systems , 2000, math/0008241.

[12]  D. Ornstein,et al.  On the Bernoulli nature of systems with some hyperbolic structure , 1998, Ergodic Theory and Dynamical Systems.

[13]  D. Szász,et al.  TheK-property of four billiard balls , 1992 .

[14]  Proof of the Ergodic Hypothesis for Typical Hard Ball Systems , 2002, math/0210280.

[15]  D. Szász,et al.  Ergodic properties of semi-dispersing billiards. I. Two cylindric scatterers in the 3D torus , 1989 .

[16]  The complete hyperbolicity of cylindric billiards , 1999, Ergodic Theory and Dynamical Systems.

[17]  N. Chernov,et al.  Nonuniformly hyperbolic K-systems are Bernoulli , 1996, Ergodic Theory and Dynamical Systems.

[18]  D. Szász,et al.  A “Transversal” Fundamental Theorem for semi-dispersing billiards , 1990 .

[19]  D. Szász,et al.  The K-property of three billiard balls , 1991 .

[20]  Nandor Simanyi Proving the ergodic hypothesis for billiards with disjoint cylindric scatterers , 2004 .