The performance of orthogonal multi-matching pursuit under RIP

The orthogonal multi-matching pursuit (OMMP) is a natural extension of orthogonal matching pursuit (OMP). We denote the OMMP with the parameter $M$ as OMMP(M) where $M\geq 1$ is an integer. The main difference between OMP and OMMP(M) is that OMMP(M) selects $M$ atoms per iteration, while OMP only adds one atom to the optimal atom set. In this paper, we study the performance of orthogonal multi-matching pursuit (OMMP) under RIP. In particular, we show that, when the measurement matrix A satisfies $(9s, 1/10)$-RIP, there exists an absolutely constant $M_0\leq 8$ so that OMMP(M_0) can recover $s$-sparse signal within $s$ iterations. We furthermore prove that, for slowly-decaying $s$-sparse signal, OMMP(M) can recover s-sparse signal within $O(\frac{s}{M})$ iterations for a large class of $M$. In particular, for $M=s^a$ with $a\in [0,1/2]$, OMMP(M) can recover slowly-decaying $s$-sparse signal within $O(s^{1-a})$ iterations. The result implies that OMMP can reduce the computational complexity heavily.

[1]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[2]  Simon Foucart,et al.  Stability and Robustness of Weak Orthogonal Matching Pursuits , 2012 .

[3]  Mike E. Davies,et al.  Sampling Theorems for Signals From the Union of Finite-Dimensional Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[4]  H. Rauhut On the Impossibility of Uniform Sparse Reconstruction using Greedy Methods , 2007 .

[5]  Lie Wang,et al.  Shifting Inequality and Recovery of Sparse Signals , 2010, IEEE Transactions on Signal Processing.

[6]  Roman Vershynin,et al.  Introduction to the non-asymptotic analysis of random matrices , 2010, Compressed Sensing.

[7]  Deborah Monique,et al.  Authors' addresses , 2004 .

[8]  Yi Shen,et al.  A Remark on the Restricted Isometry Property in Orthogonal Matching Pursuit , 2012, IEEE Transactions on Information Theory.

[9]  R. DeVore,et al.  A Simple Proof of the Restricted Isometry Property for Random Matrices , 2008 .

[10]  Tong Zhang,et al.  Sparse Recovery With Orthogonal Matching Pursuit Under RIP , 2010, IEEE Transactions on Information Theory.

[11]  Zhiqiang Xu,et al.  Deterministic sampling of sparse trigonometric polynomials , 2010, J. Complex..

[12]  Jubo Zhu,et al.  Recovery of sparse signals using OMP and its variants: convergence analysis based on RIP , 2011 .

[13]  Dustin G. Mixon,et al.  Full Spark Frames , 2011, 1110.3548.

[14]  Entao Liu,et al.  Orthogonal Super Greedy Algorithm and Applications in Compressed Sensing ∗ , 2010 .

[15]  Jian Wang,et al.  Generalized Orthogonal Matching Pursuit , 2011, IEEE Transactions on Signal Processing.

[16]  Holger Rauhut,et al.  Random Sampling of Sparse Trigonometric Polynomials, II. Orthogonal Matching Pursuit versus Basis Pursuit , 2008, Found. Comput. Math..

[17]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[18]  Emmanuel J. Candès,et al.  Decoding by linear programming , 2005, IEEE Transactions on Information Theory.

[19]  Lie Wang,et al.  New Bounds for Restricted Isometry Constants , 2009, IEEE Transactions on Information Theory.

[20]  Michael B. Wakin,et al.  Analysis of Orthogonal Matching Pursuit Using the Restricted Isometry Property , 2009, IEEE Transactions on Information Theory.

[21]  Olgica Milenkovic,et al.  Subspace Pursuit for Compressive Sensing Signal Reconstruction , 2008, IEEE Transactions on Information Theory.

[22]  Ray Maleh,et al.  Improved RIP Analysis of Orthogonal Matching Pursuit , 2011, ArXiv.