Efficient Tool to Characterize Photovoltaic Generating Systems Using Mine Blast Algorithm

Abstract—The article proposes an efficient tool to characterize the photovoltaic generating systems. The mine blast algorithm is coupled with the proposed tool to define the parameters for commercial real photovoltaic cells. The objective function is adapted to minimize the absolute errors between the experimental measured and calculated current values to accurately estimate the photovoltaic parameters. The experimental, performance, and technical data of the commercial photovoltaic cells of many manufacturers with different photovoltaic types are used to confirm the viability of the proposed method. Both single-diode and double-diode models of solar cells are approached to certify the performance of the proposed methodology. The calculated I-V and P-V characteristics are well matched to measured data with insignificant absolute errors. The study finds that the single-diode equivalent circuit suffices to precisely model the photovoltaic cells. Numerical comparisons to the other competitive heuristic methods consolidate the significance of the proposed mine blast algorithm based method.

[1]  M. F. AlHajri,et al.  Optimal extraction of solar cell parameters using pattern search , 2012 .

[2]  A. Sellami,et al.  Identification of PV solar cells and modules parameters using the genetic algorithms: Application to maximum power extraction , 2010 .

[3]  Joong Hoon Kim,et al.  Geometry optimization of a cylindrical fin heat sink using mine blast algorithm , 2014 .

[4]  Ahmet Afşin Kulaksiz,et al.  ANFIS-based estimation of PV module equivalent parameters: application to a stand-alone PV system with MPPT controller , 2013 .

[5]  S. Sadjadi,et al.  Optimization methods applied to renewable and sustainable energy: A review , 2017 .

[6]  A. Ortiz-Conde,et al.  New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I–V characteristics , 2006 .

[7]  Saad Mekhilef,et al.  Parameter extraction of solar photovoltaic modules using penalty-based differential evolution , 2012 .

[8]  T. Easwarakhanthan,et al.  Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers , 1986 .

[9]  S. Karmalkar,et al.  An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated $J{-}V$ Curve , 2009, IEEE Electron Device Letters.

[10]  J. A. Gow,et al.  Development of a photovoltaic array model for use in power-electronics simulation studies , 1999 .

[11]  M. F. AlHajri,et al.  Parameters Estimation of Double Diode Solar Cell Model , 2013 .

[12]  D. Chan,et al.  Analytical methods for the extraction of solar-cell single- and double-diode model parameters from I-V characteristics , 1987, IEEE Transactions on Electron Devices.

[13]  E. V. Dyk,et al.  Parameter extraction from I–V characteristics of PV devices , 2011 .

[14]  Alireza Rezazadeh,et al.  Parameter identification for solar cell models using harmony search-based algorithms , 2012 .

[15]  E. Muljadi,et al.  A cell-to-module-to-array detailed model for photovoltaic panels , 2012 .

[16]  Kashif Ishaque,et al.  An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE) , 2011 .

[17]  Francisco Jurado,et al.  Binary Particle Swarm Optimization for Optimization of Photovoltaic Generators in Radial Distribution Systems Using Probabilistic Load Flow , 2011 .

[18]  Prudence W. H. Wong,et al.  Parameter Estimation of Photovoltaic Models via Cuckoo Search , 2013, J. Appl. Math..

[19]  Manuel Fuentes,et al.  Characterisation of Si-crystalline PV modules by artificial neural networks , 2009 .

[20]  Nicolás Ruiz-Reyes,et al.  Evaluation of a Particle Swarm Optimization Based Method for Optimal Location of Photovoltaic Grid-connected Systems , 2010 .

[21]  Mutlu Boztepe,et al.  Neural network based solar cell model , 2006 .

[22]  Geoffrey R. Walker,et al.  Evaluating MPPT Converter Topologies Using a Matlab PV Model , 2000 .

[23]  Ahmed A. El Tayyan,et al.  PV system behavior based on datasheet , 2012 .

[24]  Huang Wei,et al.  Extracting solar cell model parameters based on chaos particle swarm algorithm , 2011, 2011 International Conference on Electric Information and Control Engineering.

[25]  Wenyin Gong,et al.  Parameter extraction of solar cell models using repaired adaptive differential evolution , 2013 .

[26]  Gilbert M. Masters,et al.  Renewable and Efficient Electric Power Systems , 2004 .

[27]  William A. Beckman,et al.  Improvement and validation of a model for photovoltaic array performance , 2006 .

[28]  Kay-Soon Low,et al.  Photovoltaic Model Identification Using Particle Swarm Optimization With Inverse Barrier Constraint , 2012, IEEE Transactions on Power Electronics.

[29]  A. K. Al-Othman,et al.  Simulated Annealing algorithm for photovoltaic parameters identification , 2012 .

[30]  Ardeshir Bahreininejad,et al.  Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems , 2013, Appl. Soft Comput..

[31]  Almoataz Y. Abdelaziz,et al.  Single-diode Model Based Photovoltaic Module: Analysis and Comparison Approach , 2014 .

[32]  Alessandra Di Gangi,et al.  A procedure to calculate the five-parameter model of crystalline silicon photovoltaic modules on the basis of the tabular performance data , 2013 .

[33]  Ardeshir Bahreininejad,et al.  Mine blast algorithm for optimization of truss structures with discrete variables , 2012 .

[34]  Marcelo Gradella Villalva,et al.  Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays , 2009, IEEE Transactions on Power Electronics.

[35]  Alireza Rezazadeh,et al.  Artificial bee swarm optimization algorithm for parameters identification of solar cell models , 2013 .