THE K2 ECLIPTIC PLANE INPUT CATALOG (EPIC) AND STELLAR CLASSIFICATIONS OF 138,600 TARGETS IN CAMPAIGNS 1–8

The K2 Mission uses the Kepler spacecraft to obtain high-precision photometry over ≈80 day campaigns in the ecliptic plane. The Ecliptic Plane Input Catalog (EPIC) provides coordinates, photometry, and kinematics based on a federation of all-sky catalogs to support target selection and target management for the K2 mission. We describe the construction of the EPIC, as well as modifications and shortcomings of the catalog. Kepler magnitudes (Kp) are shown to be accurate to ≈0.1 mag for the Kepler field, and the EPIC is typically complete to Kp ≈ 17 (Kp ≈ 19 for campaigns covered by Sloan Digital Sky Survey). We furthermore classify 138,600 targets in Campaigns 1–8 (≈88% of the full target sample) using colors, proper motions, spectroscopy, parallaxes, and galactic population synthesis models, with typical uncertainties for G-type stars of ≈3% in , ≈0.3 dex in , ≈40% in radius, ≈10% in mass, and ≈40% in distance. Our results show that stars targeted by K2 are dominated by K–M dwarfs (≈41% of all selected targets), F–G dwarfs (≈36%), and K giants (≈21%), consistent with key K2 science programs to search for transiting exoplanets and galactic archeology studies using oscillating red giants. However, we find significant variation of the fraction of cool dwarfs with galactic latitude, indicating a target selection bias due to interstellar reddening and increased contamination by giant stars near the galactic plane. We discuss possible systematic errors in the derived stellar properties, and differences with published classifications for K2 exoplanet host stars. The EPIC is hosted at the Mikulski Archive for Space Telescopes (MAST): http://archive.stsci.edu/k2/epic/search.php.

[1]  Vanessa P. Bailey,et al.  TWO SMALL TEMPERATE PLANETS TRANSITING NEARBY M DWARFS IN K2 CAMPAIGNS 0 AND 1 , 2016, 1601.02706.

[2]  K. Ulaczyk,et al.  Campaign 9 of the K2 Mission: Observational Parameters, Scientific Drivers, and Community Involvement for a Simultaneous Space- and Ground-based Microlensing Survey , 2015, 1512.09142.

[3]  Howard Isaacson,et al.  ELEVEN MULTIPLANET SYSTEMS FROM K2 CAMPAIGNS 1 AND 2 AND THE MASSES OF TWO HOT SUPER-EARTHS , 2015, 1511.09213.

[4]  P. Berlind,et al.  PLANETARY CANDIDATES FROM THE FIRST YEAR OF THE K2 MISSION , 2015, 1511.07820.

[5]  R. Handberg,et al.  EPIC 201585823, a rare triple-mode RR Lyrae star discovered in K2 mission data , 2015, 1510.03347.

[6]  Howard Isaacson,et al.  TWO TRANSITING EARTH-SIZE PLANETS NEAR RESONANCE ORBITING A NEARBY COOL STAR , 2015, 1507.08256.

[7]  Miguel de Val-Borro,et al.  High-precision photometry for K2 Campaign 1 , 2015, 1507.07578.

[8]  R. Poleski,et al.  An RR lyrae family portrait: 33 stars observed in pisces with K2-E2 , 2015, 1507.04714.

[9]  S. Bloemen,et al.  Kepler's first view of O-star variability: K2 data of five O stars in Campaign 0 as a proof of concept for O-star asteroseismology , 2015, 1507.03091.

[10]  H. R. Coelho,et al.  Asteroseismology of Solar-Type Stars with K2: Detection of Oscillations in C1 Data , 2015, 1507.01827.

[11]  D. Schneider,et al.  OSCILLATING RED GIANTS OBSERVED DURING CAMPAIGN 1 OF THE KEPLER K2 MISSION: NEW PROSPECTS FOR GALACTIC ARCHAEOLOGY , 2015, 1506.08931.

[12]  Daniel Foreman-Mackey,et al.  SYSTEMATICS-INSENSITIVE PERIODIC SIGNAL SEARCH WITH K2 , 2015, 1505.07105.

[13]  William J. Chaplin,et al.  K2P2—A PHOTOMETRY PIPELINE FOR THE K2 MISSION , 2015, 1504.05199.

[14]  M. Paegert,et al.  THE K2-ESPRINT PROJECT. I. DISCOVERY OF THE DISINTEGRATING ROCKY PLANET K2-22b WITH A COMETARY HEAD AND LEADING TAIL , 2015, 1504.04379.

[15]  John Asher Johnson,et al.  STELLAR AND PLANETARY PROPERTIES OF K2 CAMPAIGN 1 CANDIDATES AND VALIDATION OF 17 PLANETS, INCLUDING A PLANET RECEIVING EARTH-LIKE INSOLATION , 2015, 1503.07866.

[16]  Keivan G. Stassun,et al.  Kepler Eclipsing Binary Stars. VI. Identification of Eclipsing Binaries in the K2 Campaign 0 Data-set , 2015, 1503.01829.

[17]  U. Munari,et al.  The GALAH survey: scientific motivation , 2015, Monthly Notices of the Royal Astronomical Society.

[18]  Daniel Foreman-Mackey,et al.  A SYSTEMATIC SEARCH FOR TRANSITING PLANETS IN THE K2 DATA , 2015, 1502.04715.

[19]  J. McCormac,et al.  K2 Variable Catalogue: Variable Stars and Eclipsing Binaries in K2 Campaigns 1 and 0 , 2015, 1502.04004.

[20]  B. J. Fulton,et al.  A NEARBY M STAR WITH THREE TRANSITING SUPER-EARTHS DISCOVERED BY K2 , 2015, 1501.03798.

[21]  K. Braun,et al.  HOW TO CONSTRAIN YOUR M DWARF: MEASURING EFFECTIVE TEMPERATURE, BOLOMETRIC LUMINOSITY, MASS, AND RADIUS , 2015, 1501.01635.

[22]  Hilo,et al.  THE ELEVENTH AND TWELFTH DATA RELEASES OF THE SLOAN DIGITAL SKY SURVEY: FINAL DATA FROM SDSS-III , 2015, 1501.00963.

[23]  S. Roberts,et al.  Precise time series photometry for the Kepler-2.0 mission , 2014, 1412.6304.

[24]  Jaymie M. Matthews,et al.  CHARACTERIZING K2 PLANET DISCOVERIES: A SUPER-EARTH TRANSITING THE BRIGHT K DWARF HIP 116454 , 2014, 1412.5674.

[25]  N. D. Lee,et al.  The K2-TESS Stellar Properties Catalog , 2014, 1410.6379.

[26]  T. Beers,et al.  THE APOKASC CATALOG: AN ASTEROSEISMIC AND SPECTROSCOPIC JOINT SURVEY OF TARGETS IN THE KEPLER FIELDS , 2014, 1410.2503.

[27]  A. Vanderburg,et al.  A Technique for Extracting Highly Precise Photometry for the Two-Wheeled Kepler Mission , 2014, 1408.3853.

[28]  U. Munari,et al.  KINEMATIC MODELING OF THE MILKY WAY USING THE RAVE AND GCS STELLAR SURVEYS , 2014, 1405.7435.

[29]  L. Buchhave,et al.  Three regimes of extrasolar planet radius inferred from host star metallicities , 2014, Nature.

[30]  S. Bloemen,et al.  PRECISION ASTEROSEISMOLOGY OF THE PULSATING WHITE DWARF GD 1212 USING A TWO-WHEEL-CONTROLLED KEPLER SPACECRAFT , 2014, 1405.3665.

[31]  C. Jeffery,et al.  K2 observations of the pulsating subdwarf B star EQ Piscium: an sdB+dM binary , 2014, 1404.7470.

[32]  F. Grundahl,et al.  STRÖMGREN SURVEY FOR ASTEROSEISMOLOGY AND GALACTIC ARCHAEOLOGY: LET THE SAGA BEGIN , 2014, 1403.2754.

[33]  F. Mullally,et al.  The K2 Mission: Characterization and Early Results , 2014, 1402.5163.

[34]  S. Fleming,et al.  REVISED STELLAR PROPERTIES OF KEPLER TARGETS FOR THE QUARTER 1–16 TRANSIT DETECTION RUN , 2013, 1312.0662.

[35]  G. Marcy,et al.  Prevalence of Earth-size planets orbiting Sun-like stars , 2013, Proceedings of the National Academy of Sciences.

[36]  Olivier Bienayme,et al.  THE RADIAL VELOCITY EXPERIMENT (RAVE): FIFTH DATA RELEASE , 2013, 1609.03210.

[37]  Laszlo Sturmann,et al.  STELLAR DIAMETERS AND TEMPERATURES. III. MAIN-SEQUENCE A, F, G, AND K STARS: ADDITIONAL HIGH-PRECISION MEASUREMENTS AND EMPIRICAL RELATIONS , 2013, 1306.2974.

[38]  F. Mullally,et al.  FUNDAMENTAL PROPERTIES OF KEPLER PLANET-CANDIDATE HOST STARS USING ASTEROSEISMOLOGY , 2013, 1302.2624.

[39]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[40]  A. Serenelli,et al.  Bayesian analysis of ages, masses and distances to cool stars with non-LTE spectroscopic parameters , 2012, 1212.4497.

[41]  L. Fossati,et al.  Galactic archaeology: mapping and dating stellar populations with asteroseismology of red-giant stars , 2012, 1211.0146.

[42]  Russel J. White,et al.  STELLAR DIAMETERS AND TEMPERATURES. II. MAIN-SEQUENCE K- AND M-STARS , 2012, 1208.2431.

[43]  W. M. Wood-Vasey,et al.  THE NINTH DATA RELEASE OF THE SLOAN DIGITAL SKY SURVEY: FIRST SPECTROSCOPIC DATA FROM THE SDSS-III BARYON OSCILLATION SPECTROSCOPIC SURVEY , 2012, 1207.7137.

[44]  J. B. Laird,et al.  An abundance of small exoplanets around stars with a wide range of metallicities , 2012, Nature.

[45]  Las Cumbres Observatory Global Telescope Network,et al.  PLANETARY CANDIDATES OBSERVED BY KEPLER. III. ANALYSIS OF THE FIRST 16 MONTHS OF DATA , 2012, 1202.5852.

[46]  Laszlo Sturmann,et al.  STELLAR DIAMETERS AND TEMPERATURES. I. MAIN-SEQUENCE A, F, AND G STARS , 2011, 1112.3316.

[47]  Howard Isaacson,et al.  KEPLER-21b: A 1.6 REarth PLANET TRANSITING THE BRIGHT OSCILLATING F SUBGIANT STAR HD 179070 , 2011, 1112.2165.

[48]  Travis S. Metcalfe,et al.  A REVISED EFFECTIVE TEMPERATURE SCALE FOR THE KEPLER INPUT CATALOG , 2011, 1110.4456.

[49]  A. Youdin THE EXOPLANET CENSUS: A GENERAL METHOD APPLIED TO KEPLER , 2011, 1105.1782.

[50]  P. Gaulme,et al.  Global asteroseismic properties of solar-like oscillations observed by Kepler: a comparison of complementary analysis methods , 2011, 1105.0571.

[51]  S. D. Kawaler,et al.  Ensemble Asteroseismology of Solar-Type Stars with the NASA Kepler Mission , 2011, Science.

[52]  L. Casagrande,et al.  New constraints on the chemical evolution of the solar neighbourhood and galactic disc(s) - improved astrophysical parameters for the Geneva-Copenhagen Survey , 2011, 1103.4651.

[53]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[54]  Timothy M. Brown,et al.  KEPLER INPUT CATALOG: PHOTOMETRIC CALIBRATION AND STELLAR CLASSIFICATION , 2011, 1102.0342.

[55]  F. Fressin,et al.  CHARACTERISTICS OF PLANETARY CANDIDATES OBSERVED BY KEPLER. II. ANALYSIS OF THE FIRST FOUR MONTHS OF DATA , 2011, 1102.0541.

[56]  Jie Li,et al.  KOI-126: A Triply Eclipsing Hierarchical Triple with Two Low-Mass Stars , 2011, Science.

[57]  Kathryn V. Johnston,et al.  GALAXIA: A CODE TO GENERATE A SYNTHETIC SURVEY OF THE MILKY WAY , 2011, 1101.3561.

[58]  J. M. Matthews,et al.  Asteroseismology of red giants from the first four months of Kepler data: Fundamental stellar parameters , 2010, 1010.4589.

[59]  Adam L. Kraus,et al.  THE MASS–RADIUS(–ROTATION?) RELATION FOR LOW-MASS STARS , 2010, 1011.2757.

[60]  F. Fressin,et al.  CHARACTERISTICS OF KEPLER PLANETARY CANDIDATES BASED ON THE FIRST DATA SET , 2010, 1006.2799.

[61]  B. Smalley,et al.  Accurate fundamental parameters for 23 bright solar-type stars , 2010, 1002.4268.

[62]  Howard Isaacson,et al.  Kepler Planet-Detection Mission: Introduction and First Results , 2010, Science.

[63]  D. A. Caldwell,et al.  SELECTION, PRIORITIZATION, AND CHARACTERISTICS OF KEPLER TARGET STARS , 2010, 1001.0349.

[64]  T. Owen,et al.  KEPLER MISSION DESIGN, REALIZED PHOTOMETRIC PERFORMANCE, AND EARLY SCIENCE , 2010, 1001.0268.

[65]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[66]  Darko Jevremovic,et al.  The Dartmouth Stellar Evolution Database , 2008, 0804.4473.

[67]  Belgium,et al.  Evolution of asymptotic giant branch stars. II. Optical to far-infrared isochrones with improved TP- , 2007, 0711.4922.

[68]  A. Cabrera-Lavers,et al.  Transformations between 2MASS, SDSS and BVRI photometric systems: bridging the near‐infrared and optical , 2007, 0711.4356.

[69]  F. V. Leeuwen Validation of the new Hipparcos reduction , 2007, 0708.1752.

[70]  -INAF,et al.  Evolution of asymptotic giant branch stars. I. Updated synthetic TP-AGB models and their basic calibration , 2007, astro-ph/0703139.

[71]  M. Skrutskie,et al.  The Two Micron All Sky Survey (2MASS) , 2006 .

[72]  A. Robin,et al.  A synthetic view on structure and evolution of the Milky Way , 2003, astro-ph/0401052.

[73]  A. Gould,et al.  Transit Target Selection Using Reduced Proper Motions , 2002, astro-ph/0209561.

[74]  Michael S. Bessell,et al.  The Hipparcos and Tycho Photometric System Passbands , 2000 .

[75]  L. Girardi,et al.  Evolutionary tracks and isochrones for low- and intermediate-mass stars: From 0.15 to 7 , and from to 0.03 , 1999, astro-ph/9910164.

[76]  D. Schlegel,et al.  Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .

[77]  David R. Soderblom,et al.  Calculating Galactic Space Velocities and Their Uncertainties, with an Application to the Ursa Major Group , 1987 .