Modulation of oncogenic miRNA biogenesis using functionalized polyamines

[1]  Hafeez S Haniff,et al.  Defining RNA–Small Molecule Affinity Landscapes Enables Design of a Small Molecule Inhibitor of an Oncogenic Noncoding RNA , 2017, ACS central science.

[2]  Matthew D Disney,et al.  Small Molecule Inhibition of microRNA-210 Reprograms an Oncogenic Hypoxic Circuit. , 2017, Journal of the American Chemical Society.

[3]  Peter C. Gareiss,et al.  Discovery of Inhibitors of MicroRNA-21 Processing Using Small Molecule Microarrays. , 2017, ACS chemical biology.

[4]  Nathan S. Abell,et al.  Click Quantitative Mass Spectrometry Identifies PIWIL3 as a Mechanistic Target of RNA Interference Activator Enoxacin in Cancer Cells. , 2017, Journal of the American Chemical Society.

[5]  F. Mégraud,et al.  All-trans retinoic acid targets gastric cancer stem cells and inhibits patient-derived gastric carcinoma tumor growth , 2016, Oncogene.

[6]  F. Mégraud,et al.  Characterization of Biomarkers of Tumorigenic and Chemoresistant Cancer Stem Cells in Human Gastric Carcinoma , 2016, Clinical Cancer Research.

[7]  Michelle H. Moon,et al.  The Emerging Role of RNA as a Therapeutic Target for Small Molecules , 2016, Cell Chemical Biology.

[8]  M. Duca,et al.  Small-molecule approaches toward the targeting of oncogenic miRNAs: roadmap for the discovery of RNA modulators. , 2016, Future medicinal chemistry.

[9]  Xiulan Zhao,et al.  Reprogramming carcinoma associated fibroblasts by AC1MMYR2 impedes tumor metastasis and improves chemotherapy efficacy. , 2016, Cancer letters.

[10]  M. Duca,et al.  Oncogenic MicroRNAs Biogenesis as a Drug Target: Structure-Activity Relationship Studies on New Aminoglycoside Conjugates. , 2016, Chemistry.

[11]  M. Duca,et al.  Ribosome-targeting antibiotics as inhibitors of oncogenic microRNAs biogenesis: Old scaffolds for new perspectives in RNA targeting. , 2015, Bioorganic & medicinal chemistry.

[12]  D. Bartel,et al.  Predicting effective microRNA target sites in mammalian mRNAs , 2015, eLife.

[13]  I. Soubeyran,et al.  Inhibition of Gastric Tumor Cell Growth Using Seed-targeting LNA as Specific, Long-lasting MicroRNA Inhibitors , 2015, Molecular therapy. Nucleic acids.

[14]  C. Kang,et al.  AC1MMYR2 impairs high dose paclitaxel-induced tumor metastasis by targeting miR-21/CDK5 axis. , 2015, Cancer letters.

[15]  M. Disney,et al.  Small molecule chemical probes of microRNA function. , 2015, Current opinion in chemical biology.

[16]  Xiaowei Wang,et al.  miRDB: an online resource for microRNA target prediction and functional annotations , 2014, Nucleic Acids Res..

[17]  Jonathan Hall,et al.  Endogenous polyamine function—the RNA perspective , 2014, Nucleic acids research.

[18]  Zhonghan Li,et al.  Therapeutic targeting of microRNAs: current status and future challenges , 2014, Nature Reviews Drug Discovery.

[19]  M. Disney,et al.  Two-dimensional combinatorial screening enables the bottom-up design of a microRNA-10b inhibitor. , 2014, Chemical communications.

[20]  Steven M. Gallo,et al.  Sequence-based design of bioactive small molecules that target precursor microRNAs , 2014, Nature chemical biology.

[21]  Maria Duca,et al.  Targeting the production of oncogenic microRNAs with multimodal synthetic small molecules. , 2014, ACS chemical biology.

[22]  M. Fabbri,et al.  MicroRNAs and other non-coding RNAs as targets for anticancer drug development , 2013, Nature Reviews Drug Discovery.

[23]  Lei Han,et al.  AC1MMYR2, an inhibitor of dicer-mediated biogenesis of Oncomir miR-21, reverses epithelial-mesenchymal transition and suppresses tumor growth and progression. , 2013, Cancer research.

[24]  J. Doudna,et al.  Molecular mechanisms of RNA interference. , 2013, Annual review of biophysics.

[25]  C. Nelson,et al.  miRDeep*: an integrated application tool for miRNA identification from RNA sequencing data , 2012, Nucleic acids research.

[26]  C. Croce,et al.  microRNA involvement in human cancer. , 2012, Carcinogenesis.

[27]  J. Vogel,et al.  Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression , 2011, Silence.

[28]  Marcel Martin Cutadapt removes adapter sequences from high-throughput sequencing reads , 2011 .

[29]  Hans Clevers,et al.  The cancer stem cell: premises, promises and challenges , 2011, Nature Medicine.

[30]  E. Dmitrovsky,et al.  MicroRNA-31 functions as an oncogenic microRNA in mouse and human lung cancer cells by repressing specific tumor suppressors. , 2010, The Journal of clinical investigation.

[31]  E. Agostinelli,et al.  Polyamines: fundamental characters in chemistry and biology , 2010, Amino Acids.

[32]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[33]  W. Cho,et al.  miR-372 regulates cell cycle and apoptosis of ags human gastric cancer cell line through direct regulation of LATS2 , 2009, Molecules and cells.

[34]  V. Kim,et al.  Biogenesis of small RNAs in animals , 2009, Nature Reviews Molecular Cell Biology.

[35]  V. Ambros,et al.  The evolution of our thinking about microRNAs , 2008, Nature Medicine.

[36]  Qihong Huang,et al.  Small-molecule inhibitors of microrna miR-21 function. , 2008, Angewandte Chemie.

[37]  Z. Paroo,et al.  A small molecule enhances RNA interference and promotes microRNA processing , 2008, Nature Biotechnology.

[38]  Jennifer A. Doudna,et al.  In vitro reconstitution of the human RISC-loading complex , 2008, Proceedings of the National Academy of Sciences.

[39]  T. Thane,et al.  Unusual aspects of the polyamine transport system affect the design of strategies for use of polyamine analogues in chemotherapy. , 2007, Biochemical Society transactions.

[40]  Mariette Schrier,et al.  A Genetic Screen Implicates miRNA-372 and miRNA-373 As Oncogenes in Testicular Germ Cell Tumors , 2006, Cell.

[41]  J. Delcros,et al.  Effect of polyamine homologation on the transport and biological properties of heterocyclic amidines. , 2006, Journal of medicinal chemistry.

[42]  J. Delcros,et al.  Molecular requirements for targeting the polyamine transport system. Synthesis and biological evaluation of polyamine-anthracene conjugates. , 2003, Journal of medicinal chemistry.

[43]  Craig R Moores,et al.  H-40, an antigen controlled by an Igh linked gene and recognized by cytotoxic T lymphocytes. I. Genetic analysis of H-40 and distribution of its product on B cell tumors , 1984, The Journal of experimental medicine.

[44]  C. Lainé,et al.  Solid-phase synthesis of polyfunctionalized natural products: application to usnic acid, a bioactive lichen compound. , 2006, Journal of combinatorial chemistry.