A New Scaling for Newton's Iteration for the Polar Decomposition and its Backward Stability

We propose a scaling scheme for Newton's iteration for calculating the polar decomposition. The scaling factors are generated by a simple scalar iteration in which the initial value depends only on estimates of the extreme singular values of the original matrix, which can, for example, be the Frobenius norms of the matrix and its inverse. In exact arithmetic, for matrices with condition number no greater than $10^{16}$, with this scaling scheme no more than 9 iterations are needed for convergence to the unitary polar factor with a convergence tolerance roughly equal to $10^{-16}$. It is proved that if matrix inverses computed in finite precision arithmetic satisfy a backward-forward error model, then the numerical method is backward stable. It is also proved that Newton's method with Higham's scaling or with Frobenius norm scaling is backward stable.

[1]  Gene H. Golub,et al.  Matrix computations , 1983 .

[2]  J. D. Roberts,et al.  Linear model reduction and solution of the algebraic Riccati equation by use of the sign function , 1980 .

[3]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[4]  Krystyna Zietak,et al.  Numerical Behaviour of Higham's Scaled Method for Polar Decomposition , 2004, Numerical Algorithms.

[5]  Nicholas J. Higham,et al.  Parallel Singular Value Decomposition via the Polar Decomposition , 2006 .

[6]  N. Higham Computing the polar decomposition with applications , 1986 .

[7]  Walter Gander Algorithms for the polar decomposition , 1989 .

[8]  N. Higham COMPUTING A NEAREST SYMMETRIC POSITIVE SEMIDEFINITE MATRIX , 1988 .

[9]  Nicholas J. Higham,et al.  A Parallel Algorithm for Computing the Polar Decomposition , 1994, Parallel Comput..

[10]  Weiwei Sun,et al.  New Perturbation Bounds for Unitary Polar Factors , 2003, SIAM J. Matrix Anal. Appl..

[11]  Alan J. Laub,et al.  On Scaling Newton's Method for Polar Decomposition and the Matrix Sign Function , 1990, 1990 American Control Conference.

[12]  Nicholas J. Higham,et al.  Fast Polar Decomposition of an Arbitrary Matrix , 1990, SIAM J. Sci. Comput..

[13]  Ren-Cang Li,et al.  New Perturbation Bounds for the Unitary Polar Factor , 1995, SIAM J. Matrix Anal. Appl..

[14]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[15]  K. Zietak,et al.  The polar decomposition— properties, applications and algorithms , 1995 .

[16]  R. Byers Solving the algebraic Riccati equation with the matrix sign function , 1987 .

[17]  James Demmel,et al.  Design of a Parallel Nonsymmetric Eigenroutine Toolbox, Part I , 1993, PPSC.

[18]  R. Mathias Perturbation Bounds for the Polar Decomposition , 1997 .

[19]  A. Laub,et al.  The matrix sign function , 1995, IEEE Trans. Autom. Control..

[20]  L. Balzer Accelerated convergence of the matrix sign function method of solving Lyapunov, Riccati and other matrix equations , 1980 .

[21]  Mei Han An,et al.  accuracy and stability of numerical algorithms , 1991 .