Alternating Direction Method of Multipliers for Sparse Principal Component Analysis

We consider a convex relaxation of sparse principal component analysis proposed by d’Aspremont et al. (SIAM Rev. 49:434–448, 2007). This convex relaxation is a nonsmooth semidefinite programming problem in which the ℓ1 norm of the desired matrix is imposed in either the objective function or the constraint to improve the sparsity of the resulting matrix. The sparse principal component is obtained by a rank-one decomposition of the resulting sparse matrix. We propose an alternating direction method based on a variable-splitting technique and an augmented Lagrangian framework for solving this nonsmooth semidefinite programming problem. In contrast to the first-order method proposed in d’Aspremont et al. (SIAM Rev. 49:434–448, 2007), which solves approximately the dual problem of the original semidefinite programming problem, our method deals with the primal problem directly and solves it exactly, which guarantees that the resulting matrix is a sparse matrix. A global convergence result is established for the proposed method. Numerical results on both synthetic problems and the real applications from classification of text data and senate voting data are reported to demonstrate the efficacy of our method.

[1]  H. H. Rachford,et al.  The Numerical Solution of Parabolic and Elliptic Differential Equations , 1955 .

[2]  H. H. Rachford,et al.  On the numerical solution of heat conduction problems in two and three space variables , 1956 .

[3]  J. N. R. Jeffers,et al.  Two Case Studies in the Application of Principal Component Analysis , 1967 .

[4]  P. Lions,et al.  Splitting Algorithms for the Sum of Two Nonlinear Operators , 1979 .

[5]  M. Fortin,et al.  Augmented Lagrangian methods : applications to the numerical solution of boundary-value problems , 1983 .

[6]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[7]  D. Gabay Applications of the method of multipliers to variational inequalities , 1983 .

[8]  Y. Nesterov A method for unconstrained convex minimization problem with the rate of convergence o(1/k^2) , 1983 .

[9]  P. Brucker Review of recent development: An O( n) algorithm for quadratic knapsack problems , 1984 .

[10]  R. Glowinski,et al.  Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanics , 1987 .

[11]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[12]  Jonathan Eckstein Splitting methods for monotone operators with applications to parallel optimization , 1989 .

[13]  Panos M. Pardalos,et al.  An algorithm for a singly constrained class of quadratic programs subject to upper and lower bounds , 1990, Math. Program..

[14]  Dimitri P. Bertsekas,et al.  On the Douglas—Rachford splitting method and the proximal point algorithm for maximal monotone operators , 1992, Math. Program..

[15]  Farid Alizadeh,et al.  Interior Point Methods in Semidefinite Programming with Applications to Combinatorial Optimization , 1995, SIAM J. Optim..

[16]  Bingsheng He,et al.  A new inexact alternating directions method for monotone variational inequalities , 2002, Math. Program..

[17]  Michael I. Jordan,et al.  A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, NIPS 2004.

[18]  Patrick L. Combettes,et al.  Signal Recovery by Proximal Forward-Backward Splitting , 2005, Multiscale Model. Simul..

[19]  Yurii Nesterov,et al.  Smooth minimization of non-smooth functions , 2005, Math. Program..

[20]  R. Tibshirani,et al.  Sparse Principal Component Analysis , 2006 .

[21]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[22]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[23]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[24]  Yoram Singer,et al.  Efficient Learning of Label Ranking by Soft Projections onto Polyhedra , 2006, J. Mach. Learn. Res..

[25]  J.-C. Pesquet,et al.  A Douglas–Rachford Splitting Approach to Nonsmooth Convex Variational Signal Recovery , 2007, IEEE Journal of Selected Topics in Signal Processing.

[26]  Alexandre d'Aspremont,et al.  Optimal Solutions for Sparse Principal Component Analysis , 2007, J. Mach. Learn. Res..

[27]  Lester W. Mackey,et al.  Deflation Methods for Sparse PCA , 2008, NIPS.

[28]  Michael P. Friedlander,et al.  Probing the Pareto Frontier for Basis Pursuit Solutions , 2008, SIAM J. Sci. Comput..

[29]  Yoram Singer,et al.  Efficient projections onto the l1-ball for learning in high dimensions , 2008, ICML '08.

[30]  Junfeng Yang,et al.  A New Alternating Minimization Algorithm for Total Variation Image Reconstruction , 2008, SIAM J. Imaging Sci..

[31]  Tom Goldstein,et al.  The Split Bregman Method for L1-Regularized Problems , 2009, SIAM J. Imaging Sci..

[32]  Xiaoming Yuan,et al.  Alternating Direction Methods for Sparse Covariance Selection * , 2009 .

[33]  Franz Rendl,et al.  Regularization Methods for Semidefinite Programming , 2009, SIAM J. Optim..

[34]  Wotao Yin,et al.  Alternating direction augmented Lagrangian methods for semidefinite programming , 2010, Math. Program. Comput..

[35]  Shiqian Ma,et al.  Sparse Inverse Covariance Selection via Alternating Linearization Methods , 2010, NIPS.

[36]  Yurii Nesterov,et al.  Generalized Power Method for Sparse Principal Component Analysis , 2008, J. Mach. Learn. Res..

[37]  Junfeng Yang,et al.  Alternating Direction Algorithms for 1-Problems in Compressive Sensing , 2009, SIAM J. Sci. Comput..

[38]  Laurent El Ghaoui,et al.  Large-Scale Sparse Principal Component Analysis with Application to Text Data , 2011, NIPS.

[39]  Stephen P. Boyd,et al.  Distributed Optimization and Statistical Learning via the Alternating Direction Method of Multipliers , 2011, Found. Trends Mach. Learn..

[40]  Yong Zhang,et al.  An augmented Lagrangian approach for sparse principal component analysis , 2009, Mathematical Programming.

[41]  L. Ghaoui,et al.  Sparse PCA: Convex Relaxations, Algorithms and Applications , 2010, 1011.3781.

[42]  Shiqian Ma,et al.  Fast Multiple-Splitting Algorithms for Convex Optimization , 2009, SIAM J. Optim..

[43]  Xiaoming Yuan,et al.  Alternating Direction Method for Covariance Selection Models , 2011, Journal of Scientific Computing.

[44]  Marc Teboulle,et al.  Conditional Gradient Algorithmsfor Rank-One Matrix Approximations with a Sparsity Constraint , 2011, SIAM Rev..

[45]  Shiqian Ma,et al.  Fast alternating linearization methods for minimizing the sum of two convex functions , 2009, Math. Program..