Cluster-surface interaction: From soft landing to implantation

Abstract The current paper presents a state-of-the-art review in the field of interaction of atomic and molecular clusters with solids. We do not attempt to overview the entire broad field, but rather concentrate on the impact phenomena: how the physics of the cluster–surface interaction depends on the kinetic energy and what effects are induced under different energetic regimes. The review starts with an introduction to the field and a short history of cluster beam development. Then fundamental physical aspects of cluster formation and the most common methods for the production of cluster beams are overviewed. For cluster–surface interactions, one of the important scenarios is the low-energy regime where the kinetic energy per atom of the accelerated cluster stays well below the binding (cohesive) energy of the cluster constituents. This case is often called soft landing: the deposition typically does not induce cluster fragmentation, i.e. the clusters tend to preserve their composition but not necessarily their shape. Specific characteristic phenomena for soft landing of clusters are summarized. They pave the way for the use of cluster beams in the formation of nanoparticle arrays with required properties for utilization in optics and electronics, as magnetic media and catalysts, in nanobiology and nanomedicine. We pay considerable attention to phenomena occurring on impact of clusters with increased kinetic energies. In particular, we discuss the physics of the intermediate regime between deposition and implantation, i.e. slight cluster embedding into the surface—otherwise known as cluster pinning. At higher impact energies, cluster structure is lost and the impact results in local damage of the surface and often in crater and hillock formation. We consider both experimental data and theoretical simulations and discuss mechanisms of these phenomena. Some analogies to the impact of macroscopic objects, e.g. meteorites are shown. This part of the paper also overviews the research on surface sputtering under high-fluence cluster beam treatment and the existing models explaining how this phenomenon can be used for efficient smoothing of surfaces on the macroscopic scale. Several examples of successful applications of the cluster beam technique for polishing of surfaces are given. We also discuss how the physical sputtering can be combined with reactive accelerated cluster erosion. The latter can be an efficient tool for dry etching of surfaces on the nanoscale. Specificity of cluster (multicomponent projectile) stopping in matter and formation of radiation damage under keV-to-MeV energy implantations are analyzed. The part about fundamental aspects of cluster implantation is followed by several examples of practical applications of keV-energy cluster ion beams. This includes ultra-shallow doping of semiconductors and formation of ultrathin insulating layers. A few examples of MeV-energy cluster implantation, leading to the formation of nanosize hillocks or pillars on the surface as well as to local phase transitions (for instance, graphite-to-diamond) are also discussed. The review is finalized by an outlook on the future development of cluster beam research.

[1]  E. J. Boyd,et al.  The morphology of tin cluster assembled films and the effect of nitrogen , 2011 .

[2]  D. Mackenzie,et al.  From the adhesion of atomic clusters to the fabrication of nanodevices , 2006 .

[3]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[4]  S. Della-Negra,et al.  Damage creation in α-Al2O3 by MeV fullerene impacts , 1998 .

[5]  R. Dressler Chemical dynamics in extreme environments , 2001 .

[6]  K. Meiwes-Broer,et al.  Collimation of metal nanoparticle beams using aerodynamic lenses , 2006 .

[7]  T. P. Martin Shells of atoms , 1996 .

[8]  K. Ueda,et al.  Low damage smoothing of magnetic material films using a gas cluster ion beam , 2007 .

[9]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[10]  I. Yamada,et al.  Generation of the large current cluster ion beam , 2003 .

[11]  M. Moseler,et al.  Molecular-dynamics simulation of thin-film growth by energetic cluster impact. , 1995, Physical review. B, Condensed matter.

[12]  M. Moseler,et al.  Filling of micron‐sized contact holes with copper by energetic cluster impact , 1994 .

[13]  Roger Smith,et al.  Modeling the pinning of Au and Ni clusters on graphite , 2006 .

[14]  N. Hiroshiba,et al.  C60 field effect transistor with electrodes modified by La@C82 , 2004 .

[15]  F. Baletto,et al.  Structural properties of nanoclusters: Energetic, thermodynamic, and kinetic effects , 2005 .

[16]  I. Yamada,et al.  Hard DLC film formation by gas cluster ion beam assisted deposition , 2003 .

[17]  E. Campbell,et al.  Experimental studies of complex crater formation under cluster implantation of solids , 2005 .

[18]  L. T. Chadderton Nuclear tracks in solids: registration physics and the compound spike , 2003 .

[19]  K. Nordlund,et al.  Classical molecular dynamics simulations of hypervelocity nanoparticle impacts on amorphous silica , 2010 .

[20]  Yamamura Yasunori,et al.  Depth profiles and energy properties of big cluster impacts on amorphous targets , 1992 .

[21]  S. Della-Negra,et al.  Collisions of fast clusters with solids and related phenomena , 1997 .

[22]  K. Nordlund,et al.  Irradiation-induced densification of cluster-assembled thin films , 2009 .

[23]  K. Meiwes-Broer,et al.  Sputtered metal cluster ions: Unimolecular decomposition and collision induced fragmentation , 1986 .

[24]  R. C. Mobley,et al.  Molecular Beams of Macroions , 1968 .

[25]  E. Campbell,et al.  Stopping of energetic cobalt clusters and formation of radiation damage in graphite , 2009 .

[26]  E. Campbell,et al.  ELECTRONIC PROPERTIES OF THIN FILMS SUBLIMED FROM La@C82 AND Li@C60 , 2008 .

[27]  P. Mélinon,et al.  Deposition of Au N clusters on Au(111) surfaces. I. Atomic-scale modeling , 2000 .

[28]  Lutz,et al.  Unimolecular decomposition of sputtered Aln +, Cun +, and Sin + clusters. , 1986, Physical review letters.

[29]  W. Obert,et al.  Cluster Formation in Expanding Supersonic Jets: Effect of Pressure, Temperature, Nozzle Size, and Test Gas , 1972 .

[30]  D. E. Powers,et al.  Laser production of supersonic metal cluster beams , 1981 .

[31]  L. Miao,et al.  Fabrication of Carbon Aerogels , 2006 .

[32]  R. Campargue Progress in overexpanded supersonic jets and skimmed molecular beams in free-jet zones of silence , 1984 .

[33]  T. Beebe,et al.  Kinetics of Graphite Oxidation: Monolayer and Multilayer Etch Pits in HOPG Studied by STM , 1998 .

[34]  J. J. Jiménez-Rodrı́guez,et al.  A molecular dynamics study of atomic rearrangements in Cu clusters softly deposited on an Au(0 0 1) surface , 2006 .

[35]  Robert L. Whetten,et al.  Resilience of all-carbon molecules C60, C70, and C84: A surface-scattering time-of-flight investigation , 1991 .

[36]  B. Tsipinyuk,et al.  Multifragmentation in cluster-surface impact: A shattering event with a common velocity for all outgoing fragments , 2005 .

[37]  K. Nordlund,et al.  Atomistic simulation of the transition from atomistic to macroscopic cratering. , 2008, Physical review letters.

[38]  K. Nordlund,et al.  Cluster ion–solid interactions from meV to MeV energies , 2008 .

[39]  R. Benedek,et al.  Interactions of energetic particles and clusters with solids , 1991 .

[40]  I. Yamada,et al.  Molecular dynamics study of shock wave generation by cluster impact on solid targets , 1996 .

[41]  Evans,et al.  Coarsening mechanisms in a metal film: From cluster diffusion to vacancy ripening. , 1996, Physical review letters.

[42]  R. Levine,et al.  Collisional energy loss in cluster surface impact: Experimental, model, and simulation studies of some relevant factors , 1998 .

[43]  W. Jäger,et al.  Direct observation of spike effects in heavy-ion sputtering , 1981 .

[44]  K. Kaya,et al.  Structure and reactivity of bimetallic Co sub n V sub m clusters , 1990 .

[45]  H. Boyen,et al.  Nanostructured surfaces from size-selected clusters , 2003, Nature materials.

[46]  C. Colliex,et al.  Field-Ion Emission from Liquid Tin , 1981 .

[47]  J. Robertson,et al.  Influence of cluster-assembly parameters on the field emission properties of nanostructured carbon films , 2002 .

[48]  E. Roduner Nanoscopic Materials: Size-Dependent Phenomena , 2006 .

[49]  I. Mclaren,et al.  TIME-OF-FLIGHT MASS SPECTROMETER WITH IMPROVED RESOLUTION , 1955 .

[50]  C. Trautmann,et al.  Track formation and fabrication of nanostructures with MeV-ion beams , 2004 .

[51]  A. Fortunelli,et al.  Diffusion of palladium clusters on magnesium oxide. , 2005, Physical review letters.

[52]  I. Yamada,et al.  Gold nanoparticles sputtered by single ions and clusters , 2003 .

[53]  M. Anpo,et al.  Application of an Ion Beam Technique for the Design of Visible Light-Sensitive, Highly Efficient and Highly Selective Photocatalysts: Ion-Implantation and Ionized Cluster Beam Methods , 2004 .

[54]  P. Milani,et al.  Synthesis and characterization of cluster-assembled carbon thin films , 1997 .

[55]  N. Combe,et al.  Diffusion of gold nanoclusters on graphite , 1999, cond-mat/9911275.

[56]  C. Colliex,et al.  Morphology control of the supported islands grown from soft-landed clusters , 1999 .

[57]  G. Szenes,et al.  Impacts of GeV heavy ions in amorphous metallic alloys investigated by near-field scanning microscopy , 1997 .

[58]  A. Macková,et al.  Formation of surface nanostructures on rutile (TiO2): comparative study of low-energy cluster ion and high-energy monoatomic ion impact , 2009 .

[59]  Boris A. Ivanov,et al.  IMPACT CRATER COLLAPSE , 1999 .

[60]  M. Hou,et al.  Atomic-scale modeling of cluster-assembled (formula presented) thin films , 2002 .

[61]  Hannu Häkkinen,et al.  When Gold Is Not Noble: Nanoscale Gold Catalysts , 1999 .

[62]  Peng Liu,et al.  Generating Particle Beams of Controlled Dimensions and Divergence: II. Experimental Evaluation of Particle Motion in Aerodynamic Lenses and Nozzle Expansions , 1995 .

[63]  I. Yamada,et al.  Gas Cluster Ion Beam Processing for ULSI Fabrication , 1996 .

[64]  M. Streun,et al.  Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation , 2005 .

[65]  D. Wise Electrical and optical polymer systems , 1998 .

[66]  G. Ambrosone,et al.  Optical and structural properties of siliconlike films prepared by plasma-enhanced chemical-vapor deposition , 2005 .

[67]  Donggeun Lee,et al.  Development and experimental evaluation of aerodynamic lens as an aerosol inlet of single particle mass spectrometry , 2008 .

[68]  G. Faraci,et al.  Pinning of size-selected Pd nanoclusters on graphite. , 2006, The Journal of chemical physics.

[69]  J. Matsuo,et al.  High-intensity oxygen cluster ion beam generation and its application to cluster ion-assisted deposition , 1999 .

[70]  U. Landman,et al.  Controlled Deposition, Soft Landing, and Glass Formation in Nanocluster-Surface Collisions , 1993, Science.

[71]  S. H. Park,et al.  Electroluminescence in polymer-fullerene photovoltaic cells , 2005 .

[72]  Wilson,et al.  Effects of isolated atomic collision cascades on SiO2/Si interfaces studied by scanning tunneling microscopy. , 1988, Physical review. B, Condensed matter.

[73]  M. Moseler,et al.  Softlanding and STM imaging of Ag 561 clusters on a C 60 monolayer , 2007 .

[74]  S. Kucheyev,et al.  Damage buildup and the molecular effect in Si bombarded with PFn cluster ions , 2007 .

[75]  T. Kondow,et al.  Reactive scattering of clusters and cluster ions from solid surfaces , 2003 .

[76]  Shattering of clusters upon surface impact: An experimental and theoretical study. , 1995, Physical review letters.

[77]  J. Fenn,et al.  Electrospray ion source: another variation on the free-jet theme , 1984 .

[78]  T. Seki,et al.  Molecular dynamics simulations for gas cluster ion beam processes , 2010 .

[79]  Taylor,et al.  Ultraviolet photoelectron spectra of mass-selected copper clusters: Evolution of the 3d band. , 1990, Physical review letters.

[80]  M. Kappes,et al.  Fragmentation of C+60 and higher fullerenes by surface impact , 1996 .

[81]  J. P. Perez,et al.  DC conduction in diamond-like carbon films obtained by low-energy cluster beam deposition , 1995 .

[82]  Y. Fukuma,et al.  Film growth of Ge1−xMnxTe using ionized-cluster beam technique , 2001 .

[83]  K. Meiwes-Broer,et al.  Pure metal and metal-doped rare-gas clusters grown in a pulsed ARC cluster ion source , 1990 .

[84]  P. Milani,et al.  Biocompatibility of cluster-assembled nanostructured TiO2 with primary and cancer cells. , 2006, Biomaterials.

[85]  O. Hagena Nucleation and growth of clusters in expanding nozzle flows , 1981 .

[86]  Hellmut Haberland,et al.  Thin films from energetic cluster impact: A feasibility study , 1992 .

[87]  P. A. Brühwiler,et al.  Graphite surface topography induced by Ta cluster impact and oxidative etching , 1998 .

[88]  T. Seki,et al.  Cluster size dependence of sputtering yield by cluster ion beam irradiation , 2006 .

[89]  T. Sakurai,et al.  Mass distributions of copper, silver and gold clusters and electronic shell structure , 1985 .

[90]  Michael Vollmer,et al.  Optical properties of metal clusters , 1995 .

[91]  A molecular dynamics simulation of cluster dissociation process under cluster ion implantation , 2003 .

[92]  G. Ganteför,et al.  New experimental setup for photoelectron spectroscopy on cluster anions , 1992 .

[93]  U. Landman,et al.  SLIP DIFFUSION AND LEVY FLIGHTS OF AN ADSORBED GOLD NANOCLUSTER , 1999 .

[94]  I. Yamada,et al.  Nano-scale surface modification using gas cluster ion beams — A development history and review of the Japanese nano-technology program , 2007 .

[95]  I. Yamada,et al.  Incident angle dependence of the sputtering effect of Ar-cluster-ion bombardment , 1997 .

[96]  K. Nordlund,et al.  Contact epitaxy by deposition of Cu, Ag, Au, Pt, and Ni nanoclusters on (100) surfaces: Size limits and mechanisms , 2007 .

[97]  M. Slipchenko,et al.  Use of helium nanodroplets for assembly, transport, and surface deposition of large molecular and atomic clusters. , 2007, The Journal of chemical physics.

[98]  M. Döbeli,et al.  Surface tracks by MeV C60 impacts on mica and PMMA , 1998 .

[99]  D. Fink,et al.  Very large sputtering yields of ion irradiated C60 films , 1997 .

[100]  I. Yamada,et al.  Cluster Ion Beam Processing , 1997 .

[101]  I. Yamada,et al.  SiO2 film formation at room temperature by gas cluster ion beam oxidation , 1996 .

[102]  I. Yamada,et al.  Stable optical thin film deposition with O2 cluster ion beam assisted deposition , 2003 .

[103]  Andrew G. Glen,et al.  APPL , 2001 .

[104]  R. Levine,et al.  The transition from recoil to shattering in cluster-surface impact: an experimental and computational study , 1998 .

[105]  Hellmut Haberland,et al.  Clusters of Atoms and Molecules II , 1994 .

[106]  U. Even,et al.  Cluster Impact Chemistry , 1998 .

[107]  P. Jensen Growth of nanostructures by cluster deposition: Experiments and simple models , 1999 .

[108]  F. Despa,et al.  Production of bimetallic clusters by a dual-target dual-laser vaporization source , 2000 .

[109]  J. A. Alonso Structure and Properties of Atomic Nanoclusters , 2005 .

[110]  L. Seminara,et al.  Implantation of size-selected silver clusters into graphite , 2004 .

[111]  P. Mélinon,et al.  Deposition of AuN clusters on Au(111) surfaces: Experimental results and comparison with simulations , 2000 .

[112]  Chieh-Li Chen,et al.  Molecular dynamics simulations of the internal temperature dependent diffusing and epitaxial behaviors of Pd–Ag cluster beam deposition , 2010 .

[113]  R. Schaub,et al.  Decorated Ag19 on Pt(111) or the "rare gas necklace". , 2001, Physical review letters.

[114]  R. H. Ritchie,et al.  Energy Loss of Swift Proton Clusters in Solids , 1974 .

[115]  G. Jaskierowicz,et al.  Latent track formation in silicon irradiated by 30 MeV fullerenes , 1998 .

[116]  C. Bréchignac,et al.  Bent graphite surfaces as guides for cluster diffusion and anisotropic growth , 2008 .

[117]  Andrea Vanossi,et al.  Ballistic nanofriction. , 2010, Nature materials.

[118]  N. Arista Erergy loss of correlated charges in an electron gas , 1978 .

[119]  Isao Yamada,et al.  Proposal for a hardness measurement technique without indentor by gas-cluster-beam bombardment , 2000 .

[120]  Paolo Milani,et al.  Cluster beam deposition: a tool for nanoscale science and technology , 2006 .

[121]  A. Bleloch,et al.  Three-dimensional atomic-scale structure of size-selected gold nanoclusters , 2008, Nature.

[122]  A. White,et al.  Classical Nucleation Theory and Its Application to Condensing Steam Flow Calculations , 2005 .

[123]  P. Milani,et al.  Production and characterization of highly intense and collimated cluster beams by inertial focusing in supersonic expansions , 2001 .

[124]  X. Gong,et al.  Simulation of Ni cluster diffusion on Au(1 1 0)-(1 × 2) surface , 2003 .

[125]  I. Nishida,et al.  A Study of Lithium Clusters by Means of a Mass Analyzer , 1977 .

[126]  Matthias Brack,et al.  The physics of simple metal clusters: self-consistent jellium model and semiclassical approaches , 1993 .

[127]  Luc Favre,et al.  Magnetic and structural properties of isolated and assembled clusters , 2005 .

[128]  H. Meyer,et al.  Scattering Analysis of Cluster Beams: Formation and Fragmentation of Small Ar n Clusters , 1984 .

[129]  E. Campbell,et al.  Complex crater formation on silicon surfaces by low-energy Arn+ cluster ion implantation , 2004 .

[130]  Giacinto Scoles,et al.  Atomic and Molecular Beam Methods , 1988 .

[131]  K. Awazu,et al.  Structure of latent tracks in rutile single crystal of titanium dioxide induced by swift heavy ions , 2006 .

[132]  I. Yamada,et al.  Etching, smoothing, and deposition with gas-cluster ion beam technology , 2000 .

[133]  I. Yamada,et al.  Non-linear processes in the gas cluster ion beam modification of solid surfaces , 1998 .

[134]  C E Bottani,et al.  Cluster-beam deposition and in situ characterization of carbyne-rich carbon films. , 2002, Physical review letters.

[135]  Uzi Landman,et al.  Controlled deposition and glassification of copper nanoclusters , 1994 .

[136]  I. Monnet,et al.  Creation of multiple nanodots by single ions. , 2007, Nature nanotechnology.

[137]  T. Aoki,et al.  Molecular dynamics study of damage formation characteristics by large cluster ion impacts , 2003 .

[138]  María J. López,et al.  MOLECULAR-DYNAMICS STUDY OF THE STRUCTURAL REARRANGEMENTS OF CU AND AU CLUSTERS SOFTLY DEPOSITED ON A CU(001) SURFACE , 1999 .

[139]  P. Milani,et al.  FAST TRACK COMMUNICATION: Poly(methyl methacrylate)-palladium clusters nanocomposite formation by supersonic cluster beam deposition: a method for microstructured metallization of polymer surfaces , 2009, 0902.0228.

[140]  C. Xu,et al.  Enhanced thermal stability of monodispersed silver cluster arrays assembled on block copolymer scaffolds , 2010, Nanotechnology.

[141]  W. Schneider,et al.  An ultrahigh vacuum sputter source for in situ deposition of size-selected clusters: Ag on graphite , 1998 .

[142]  Anirban Misra,et al.  Photoinduced antiferromagnetic to ferromagnetic crossover in organic systems. , 2010, Journal of Physical Chemistry A.

[143]  H. Urbassek,et al.  Cluster-size dependence of ranges of 100eV/atom Au , 2005 .

[144]  T. Döppner,et al.  Excited-state relaxation of Ag8 clusters embedded in helium droplets. , 2004, Physical review letters.

[145]  Tianpin Wu,et al.  Electronic Structure Controls Reactivity of Size-Selected Pd Clusters Adsorbed on TiO2 Surfaces , 2009, Science.

[146]  A. Achleitner,et al.  Soft landing of size-selected clusters in rare gas matrices , 2003 .

[147]  H. Bernas,et al.  GIANT METAL SPUTTERING YIELDS INDUCED BY 20-5000 KEV/ATOM GOLD CLUSTERS , 1998 .

[148]  The growth dynamics of energetic cluster impact films , 1998 .

[149]  L. Kuipers,et al.  The impact of size-selected Ag clusters on graphite: an STM study , 1996 .

[150]  S. Della-Negra,et al.  Transformation of graphite into nanodiamond following extreme electronic excitations , 2007 .

[151]  Salvatore Iannotta,et al.  Cluster Beam Synthesis of Nanostructured Materials , 1999 .

[152]  T. Aoki,et al.  Molecular dynamics simulations of surface smoothing and sputtering process with glancing-angle gas cluster ion beams , 2007 .

[153]  M. Moseler,et al.  Thin film growth by energetic cluster impact (ECI) : comparison between experiment and molecular dynamics simulations , 1993 .

[154]  Peter Sigmund,et al.  Mechanisms and theory of physical sputtering by particle impact , 1987 .

[155]  Paolo Milani,et al.  RAPID COMMUNICATION: A pulsed microplasma source of high intensity supersonic carbon cluster beams , 1999 .

[156]  Y. Qiang,et al.  Hard coatings (TiN, TixAl1−xN) deposited at room temperature by energetic cluster impact , 1998 .

[157]  E. Campbell,et al.  Origin of complex impact craters on native oxide coated silicon surfaces , 2008 .

[158]  E. Campbell,et al.  Surface nanostructuring by implantation of cluster ions , 2004 .

[159]  U. Landman,et al.  Dynamics of Cluster-Surface Collisions , 1992, Science.

[160]  S. Kenny,et al.  Scaling relations for implantation of size-selected Au, Ag, and Si clusters into graphite. , 2003, Physical review letters.

[161]  Y. Achiba,et al.  Collision-induced electron detachment of carbon clusters , 1996 .

[162]  R. Weiel Clustering in expanding nozzle flows , 1993 .

[163]  A. Pérez,et al.  Diffusion and aggregation of large antimony and gold clusters deposited on graphite , 1996 .

[164]  M. Kappes,et al.  A comparison between fullerene and single atom impacts on graphite , 1997 .

[165]  I. Yamada,et al.  Sputtering of elemental metals by Ar cluster ions , 1997 .

[166]  Jing-Ming Liang,et al.  Implantation and post-annealing characteristics when impinging small B , 2005 .

[167]  R. Methling,et al.  Magnetic studies on mass-selected iron particles , 2001 .

[168]  David B. Kittelson,et al.  Generating Particle Beams of Controlled Dimensions and Divergence: I. Theory of Particle Motion in Aerodynamic Lenses and Nozzle Expansions , 1995 .

[169]  M. Broyer,et al.  Organization of size-selected platinum and indium clusters soft-landed on surfaces , 2007 .

[170]  Etching characteristics for tracks of carbon cluster ions in polycarbonate , 2004 .

[171]  S. Della-Negra,et al.  Track formation in amorphous Fe0.55Zr0.45 alloys irradiated by MeV C60 ions: Influence of intrinsic stress on induced surface deformations , 2003 .

[172]  H. H. Andersen,et al.  Very large gold and silver sputtering yields induced by keV to MeV energy Au n clusters (n=1-13) , 2002 .

[173]  K. Rademann,et al.  Fragmentation of clusters induced by collision with a solid surface: comparison of antimony and bismuth cluster ions , 1997 .

[174]  O. Hagena Condensation in free jets: Comparison of rare gases and metals , 1987 .

[175]  M. Streun,et al.  Pinning of size-selected Ag clusters on graphite surfaces , 2000 .

[176]  D. P. Woodruff,et al.  The Chemical Physics of Solid Surfaces , 2012 .

[177]  L. Kuipers,et al.  Gas condensation source for production and deposition of size-selected metal clusters , 1997 .

[178]  U. Even,et al.  Chemical reactions induced by cluster impact I. (CH 3 I) n - ? I 2 - . , 1999 .

[179]  Hartmann,et al.  Rotationally Resolved Spectroscopy of SF6 in Liquid Helium Clusters: A Molecular Probe of Cluster Temperature. , 1995, Physical review letters.

[180]  K. Kern,et al.  Controlled Deposition of Size-Selected Silver Nanoclusters , 1996, Science.

[181]  J. Keinonen,et al.  Argon cluster impacts on layered silicon, silica, and graphite surfaces , 2007 .

[182]  P. Wegener Molecular beams and low density gasdynamics , 1974 .

[183]  J. Q. Xie,et al.  Structural and tribological characteristics of carbon nitride films deposited by the reactive ionized-cluster beam technique , 1999 .

[184]  Liu,et al.  Effect of small-cluster mobility and dissociation on the island density in epitaxial growth. , 1995, Physical review. B, Condensed matter.

[185]  Y. Yamamura Sputtering by cluster ions , 1988 .

[186]  T. P. Martin Large clusters of atoms and molecules , 1996 .

[187]  I. Yamada,et al.  Titanium-dioxide film formation using gas cluster ion beam assisted deposition technique , 2003 .

[188]  Carroll,et al.  Shallow implantation of "Size-Selected" Ag clusters into graphite , 2000, Physical review letters.

[189]  N. Bartelt,et al.  Diffusion of monolayer adatom and vacancy clusters: Langevin analysis and Monte Carlo simulations of their Brownian motion. , 1995, Physical review letters.

[190]  L. Curtiss,et al.  Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. , 2009, Nature materials.

[191]  D. Korosak,et al.  Comparative study of I-V characteristics of the ICB deposited Ag\n-Si(111) and Ag\p-Si(100) Schottky junctions , 1998 .

[192]  K. Holsapple THE SCALING OF IMPACT PROCESSES IN PLANETARY SCIENCES , 1993 .

[193]  Yasutaka Yamaguchi,et al.  Large-scale molecular dynamics simulations of cluster impact and erosion processes on a diamond surface , 2002 .

[194]  Y. Yamaguchi,et al.  Surface smoothing of single‐crystal diamond by high‐speed cluster impacts with and without reactive erosion , 2004 .

[195]  Kellogg Gl Oscillatory behavior in the size dependence of cluster mobility on metal surfaces: Rh on Rh(100). , 1994 .

[196]  L. Hanley,et al.  Cluster beam deposition of lead sulfide nanocrystals into organic matrices. , 2009, ACS applied materials & interfaces.

[197]  C. Massobrio,et al.  Deposition of metallic clusters on a metallic surface at zero initial kinetic energy: evidence for implantation and site exchanges , 1997 .

[198]  M. Moseler,et al.  Penetration of thin C60 films by metal nanoparticles. , 2010, Nature nanotechnology.

[199]  K. Kelly,et al.  OBSERVATIONS OF ANISOTROPIC ELECTRON SCATTERING ON GRAPHITE WITH A LOW-TEMPERATURE SCANNING TUNNELING MICROSCOPE , 1999 .

[200]  N. Rösch,et al.  NaxAu and CsxAu bimetal clusters: Finite size analogs of sodium–gold and cesium–gold compounds , 1996 .

[201]  M. Kappes,et al.  Neutralization and delayed ionization in fullerene surface collisions: Fragmentation and ionization rates as a route to activation energies , 1996 .

[202]  J. Buttet,et al.  SOFT LANDING AND FRAGMENTATION OF SMALL CLUSTERS DEPOSITED IN NOBLE-GAS FILMS , 1998 .

[203]  P. Hawkes Comment on a paper by K. Halbach: A simple class of beam transport systems with optically axisymmetric transfer properties , 1977 .

[204]  T. Sugii,et al.  Range and Damage Distribution in Cluster Ion Implantation , 1996 .

[205]  M. Broyer,et al.  Study of bimetallic Pd–Pt clusters in both free and supported phases , 1995 .

[206]  Supported magnetic nanoclusters: soft landing of Pd clusters on a MgO surface. , 2002, Physical review letters.

[207]  P. Reinhard,et al.  Dynamics of clusters and molecules in contact with an environment , 2009, 0903.1004.

[208]  David B. Fenner,et al.  Nanoscale surface texturing by impact of accelerated condensed-gas nanoparticles , 2002, SPIE Optics + Photonics.

[209]  T. Takagi,et al.  Vaporized-metal cluster formation and ionized-cluster beam deposition and epitaxy☆ , 1981 .

[210]  K. Sattler,et al.  Generation of Metal Clusters Containing from 2 to 500 Atoms , 1980 .

[211]  Diagnostics of mixed van der Waals clusters , 1998 .

[212]  Liping Ma,et al.  High-speed and high-current density C60 diodes , 2004 .

[213]  J. Rabalais,et al.  On the defect structure due to low energy ion bombardment of graphite , 1995 .

[214]  The structure of cobalt nanoparticles on Ge(001) , 2007 .

[215]  J. Giérak,et al.  Quantum-dot systems prepared by 2D organization of nanoclusters preformed in the gas phase on functionalized substrates , 2002 .

[216]  H. Vach,et al.  EXPERIMENTAL INVESTIGATION OF LARGE NITROGEN CLUSTER SCATTERING FROM GRAPHITE : TRANSLATIONAL AND ROTATIONAL DISTRIBUTIONS OF EVAPORATED N2 MOLECULES , 1999 .

[217]  Klaus Sattler,et al.  Handbook of Nanophysics : Clusters and Fullerenes , 2010 .

[218]  Jun Xu,et al.  Growth of Ge films by cluster beam deposition , 2002 .

[219]  Takaaki Aoki,et al.  Nano-Processing with Gas Cluster Ion Beams , 2000 .

[220]  H. Vach,et al.  EXPERIMENTAL EVIDENCE OF ENHANCED DIFFUSE MONOMER SCATTERING IN CLUSTER-SURFACE COLLISIONS. ARN ON GRAPHITE , 1995 .

[221]  S. C. O'brien,et al.  C60: Buckminsterfullerene , 1985, Nature.

[222]  T. Seki,et al.  Low-damage surface smoothing of laser crystallized polycrystalline silicon using gas cluster ion beam , 2007 .

[223]  P. Mcmurry,et al.  Aerodynamic Focusing of Nanoparticles: I. Guidelines for Designing Aerodynamic Lenses for Nanoparticles , 2005 .

[224]  T. Takagi,et al.  An evaluation of metal and semiconductor films formed by ionized-cluster beam deposition , 1976 .

[225]  J. Gspann REACTIVE ACCELERATED CLUSTER EROSION (RACE) BY IONIZED CLUSTER BEAMS , 1996 .

[226]  Brunelle,et al.  Tracks in metals by MeV fullerenes. , 1995, Physical review letters.

[227]  R. Blaikie,et al.  Templated-assembly of conducting antimony cluster wires , 2004 .

[228]  P. Sigmund,et al.  Penetration of slow gold clusters through silicon , 1990 .

[229]  R. Smalley,et al.  Ultraviolet photoelectron spectroscopy of copper clusters , 1988 .

[230]  M. Lang,et al.  Ion tracks on LiF and CaF2 single crystals characterized by scanning force microscopy , 2002 .

[231]  T. Diederich Shell structure of magnesium and other divalent metal clusters (11 pages) , 2005 .

[232]  Anton S. Kolesnikov,et al.  Atomic scale modelling of Al and Ni(1 1 1) surface erosion under cluster impact , 2003 .

[233]  Winston A. Saunders,et al.  Electronic Shell Structure and Abundances of Sodium Clusters , 1984 .

[234]  U. Buck Properties of neutral clusters from scattering experiments , 1988 .

[235]  K. Meiwes-Broer,et al.  The application of a Wien filter to mass analysis of heavy clusters from a pulsed supersonic nozzle source , 1997 .

[236]  Cluster-ion implantation: An approach to fabricate ultrashallow junctions in silicon , 2002 .

[237]  Olof Echt,et al.  Magic Numbers for Sphere Packings: Experimental Verification in Free Xenon Clusters , 1981 .

[238]  G. Ertl,et al.  Light emission in the agglomeration of silver clusters , 2000 .

[239]  B. Kippelen,et al.  Intensity-dependent equivalent circuit parameters of organic solar cells based on pentacene and C60 , 2005 .

[240]  G. W. Sears,et al.  Production of Particulate Beams , 1964 .

[241]  L. J. Lewis,et al.  Diffusion of nanoclusters , 2004 .

[242]  J. Murakami,et al.  Surface-induced fragmentation of tin cluster ions on a highly oriented pyrolytic graphite surface , 2001 .

[243]  M. Vece,et al.  Pinning of size-selected gold and nickel nanoclusters on graphite , 2005 .

[244]  Roger Smith,et al.  Energetic Impact of Size-Selected Metal Cluster Ions on Graphite , 1998 .

[245]  T. Sugai,et al.  Fragmentation process of size‐selected aluminum cluster anions in collision with a silicon surface , 1996 .

[246]  R. Lathe Phd by thesis , 1988, Nature.

[247]  R. Kelly Theory of thermal sputtering , 1977 .

[248]  P. Milani,et al.  Cluster beam microfabrication of patterns of three-dimensional nanostructured objects , 2000 .

[249]  A. Kirkpatrick Gas cluster ion beam applications and equipment , 2003 .

[250]  R. Palmer,et al.  Immobilisation of proteins by atomic clusters on surfaces. , 2007, Trends in biotechnology.

[251]  R. Levine,et al.  Internal energy dependence of the fragmentation patterns of C60 and C60 , 1996 .

[252]  I. Yamada,et al.  Surface processing with ionized cluster beams: computer simulation , 1999 .

[253]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[254]  D. Jefferies,et al.  Abstract: Intense field‐emission ion source of liquid metals , 1975 .

[255]  E. Campbell,et al.  Conductance and EPR study of the endohedral fullerene Li@C60 , 2005 .

[256]  Herbert M. Urbassek,et al.  Sputtering of Au (111) induced by 16-keV Au cluster bombardment: Spikes, craters, late emission, and fluctuations , 2000 .

[257]  R. M. Bradley,et al.  Theory of ripple topography induced by ion bombardment , 1988 .

[258]  S. Baker,et al.  The construction of a gas aggregation source for the preparation of size-selected nanoscale transition metal clusters , 2000 .

[259]  H. Helm,et al.  Field emission ion source of molecular cesium ions , 1983 .

[260]  A. Perry,et al.  The smoothness, hardness and stress in titanium nitride following argon gas cluster ion beam treatment , 2001 .

[261]  Karl-Heinz Meiwes-Broer,et al.  Metal Clusters at Surfaces , 2000 .

[262]  Konstantin M. Neyman,et al.  Pd and Ag dimers and tetramers adsorbed at the MgO(001) surface: a density functional study , 1999 .

[263]  E. Campbell,et al.  Nanohillock formation by impact of small low-energy clusters with surfaces , 2003 .

[264]  K. Bier,et al.  Strahlen aus kondensierten Atomen und Molekeln im Hochvakuum , 1956 .

[265]  I. Yamada,et al.  Angular distributions of the particles sputtered with Ar cluster ions , 1998 .

[266]  Y. Toporov,et al.  Swift heavy ion irradiation effect on the surface of sapphire single crystals , 2001 .

[267]  A. Dzhurakhalov,et al.  Interface formation by low energy deposition of core-shell Ag-Co nanoclusters on Ag(100) , 2007 .

[268]  S. Purcell,et al.  Nanotips prepared by ion or cluster impacts for flat panel displays , 2000 .

[269]  J. English,et al.  Laser induced fluorescence of metal clusters produced by laser vaporization: Gas phase spectrum of Pb2 , 1981 .

[270]  K. Meiwes-Broer,et al.  The pulsed arc cluster ion source (PACIS) , 1991 .

[271]  M. Moseler,et al.  On the origin of surface smoothing by energetic cluster impact: molecular dynamics simulation and mesoscopic modeling , 2000 .

[272]  S. Zinkle,et al.  Surface defects in Al2O3 and MgO irradiated with high-energy heavy ions , 2005 .

[273]  J. Bansmann,et al.  Structure and magnetic moments of mass-filtered deposited nanoparticles , 2007 .

[274]  Goyal,et al.  Vibrational spectroscopy of sulfur hexafluoride attached to helium clusters. , 1992, Physical review letters.

[275]  Anders Johansen,et al.  Gold-cluster ranges in aluminium, silicon and copper , 2003 .

[276]  Jiarui Liu,et al.  Implantation damage effect on boron annealing behavior using low-energy polyatomic ion implantation , 2000 .

[277]  K. Meiwes-Broer,et al.  Size-dependent alignment of Fe nanoparticles upon deposition onto W(110) , 2010 .

[278]  C. Binns Nanoclusters deposited on surfaces , 2001 .

[279]  Puru Jena,et al.  Clusters: a bridge across the disciplines of physics and chemistry. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[280]  A. Wucher,et al.  The formation of clusters during ion induced sputtering of metals , 1996 .

[281]  V. Popok Energetic cluster ion beams: Modification of surfaces and shallow layers , 2011 .

[282]  Wei Yang,et al.  Supersonic wave propagation in Cu under high speed cluster impact , 2004 .

[283]  Poly[2-(N-carbazolyl)-5-(2-ethylhexyloxy)-1,4-phenylenevinylene]/tris (8-hydroxyquinoline) aluminum heterojunction electroluminescent devices produced by cluster beam deposition methods , 2002 .

[284]  H. Usui,et al.  Low temperature epitaxy by ionized‐cluster beam , 1986 .

[285]  James R Engstrom,et al.  The reaction of atomic oxygen with Si(100) and Si(111): I. Oxide decomposition, active oxidation and the transition to passive oxidation , 1991 .

[286]  A. Nakajima,et al.  A soft-landing experiment on organometallic cluster ions: infrared spectroscopy of V(benzene)2 in Ar matrix , 2001 .

[287]  Computer modeling and electron microscopy of silicon surfaces irradiated by cluster ion impacts , 2003 .

[288]  M. Döbeli,et al.  Sputtering and defect production by focused gold cluster ion beam irradiation of silicon , 1997 .

[289]  E. Campbell,et al.  Design and capabilities of a cluster implantation and deposition apparatus: First results on hillock formation under energetic cluster ion bombardment , 2002 .

[290]  I. Yamada,et al.  Craters on silicon surfaces created by gas cluster ion impacts , 2002 .

[291]  C. Roland,et al.  Simulations of thin film deposition from atomic and cluster beams , 1996 .

[292]  T. Croley,et al.  Electrospray ionization tandem mass spectrometric study of salt cluster ions. Part 1--investigations of alkali metal chloride and sodium salt cluster ions. , 2001, Journal of mass spectrometry : JMS.

[293]  I. Yamada,et al.  Surface smoothing mechanism of gas cluster ion beams , 2000 .

[294]  Miss A.O. Penney (b) , 1974, The New Yale Book of Quotations.

[295]  M. Broyer,et al.  Cluster assembled materials: a novel class of nanostructured solids with original structures and properties , 1997 .

[296]  K. Nordlund,et al.  Atomic flows, coronas and cratering in Au, Si and SiO2 , 2009 .

[297]  T. Seki,et al.  Sidewall polishing with a gas cluster ion beam for photonic device applications , 2005 .

[298]  D. Fink,et al.  A simple model for latent track formation due to cluster ion stopping and fragmentation in solids , 2003 .

[299]  Roger Kelly,et al.  Revisiting the thermal-spike concept in ion-surface interactions , 1997 .

[300]  Federmann,et al.  Cold Metal Clusters: Helium Droplets as a Nanoscale Cryostat. , 1996, Physical review letters.

[301]  Rajendra Prasad,et al.  Atomic and Molecular Clusters , 2005 .

[302]  V. Ponce,et al.  The energy loss of correlated protons in channelling , 1975 .

[303]  Joachim V. R. Heberlein,et al.  Focused nanoparticle-beam deposition of patterned microstructures , 2000 .

[304]  Sigmund,et al.  Pronounced nonlinear behavior of atomic collision sequences induced by keV-energy heavy ions in solids and molecules. , 1989, Physical review. A, General physics.

[305]  J. Mintmire,et al.  Simulations of buckminsterfullerene (C60) collisions with a hydrogen-terminated diamond {111} surface , 1991 .

[306]  I. Yamada,et al.  Surface smoothing effects with reactive cluster ion beams , 1998 .

[307]  I. Yamada,et al.  Gas Cluster Ion Beam Equipment and Applications for Surface Processing , 2008, IEEE Transactions on Plasma Science.

[308]  Hsieh,et al.  Effect of temperature on the dynamics of energetic displacement cascades: A molecular dynamics study. , 1989, Physical review. B, Condensed matter.

[309]  Richard E. Palmer,et al.  Chapter 15 Modelling the structure and dynamics of metal nanoclusters deposited on graphite , 2007 .

[310]  G. Tendeloo,et al.  Low-energy-deposited Au clusters investigated by high-resolution electron microscopy and molecular dynamics simulations , 2000 .

[311]  L. Segal John , 2013, The Messianic Secret.

[312]  R. Levine,et al.  Driving high threshold chemical reactions during the compression interlude in cluster surface impact , 2002 .

[313]  O. Hagena Cluster ion sources (invited) , 1992 .

[314]  Walt A. de Heer,et al.  The physics of simple metal clusters: experimental aspects and simple models , 1993 .

[315]  T. Takagi Ion beam modification of solids: towards intelligent materials , 1998 .

[316]  B. K. Rao,et al.  Physics and chemistry of small clusters , 1987 .

[317]  Isao Yamada,et al.  Materials Processing by Gas Cluster Ion Beams , 2001 .

[318]  Kellogg Gl,et al.  Surface diffusion modes for Pt dimers and trimers on Pt(001). , 1991 .

[319]  K. Nordlund,et al.  Origin of nonlinear sputtering during nanocluster bombardment of metals , 2007 .

[320]  P. Milani,et al.  Cluster beam microfabrication of SiC pattern on Si(100) [rapid communication] , 2003 .

[321]  I. Yamada,et al.  Current research and development topics on gas cluster ion-beam processes , 2005 .

[322]  F. Stienkemeier,et al.  Formation and properties of metal clusters isolated in helium droplets. , 2007, Physical chemistry chemical physics : PCCP.

[323]  M. Seah,et al.  Cluster primary ion sputtering: correlations in secondary ion intensities in TOF SIMS , 2011 .

[324]  R. Averback,et al.  MD studies of the interactions of low energy particles and clusters with surfaces , 1994 .

[325]  R. Smalley Laser Studies of Metal Cluster Beams , 1983 .