A consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution

In this paper, we propose a consistent method of estimation for the parameters of the three-parameter inverse Gaussian distribution. We then discuss some properties of these estimators and show by means of a Monte Carlo simulation study that the proposed estimators perform better than some other prominent estimators in terms of bias and root mean squared error. Finally, we present two real-life examples to illustrate the method of inference developed here.

[1]  Simos G. Meintanis,et al.  Estimation in the three-parameter inverse Gaussian distribution , 2005, Comput. Stat. Data Anal..

[2]  H. Nagatsuka,et al.  Parameter Estimation of the Shape Parameter of the Castillo–Hadi Model , 2005 .

[3]  A. Zients Andy , 2003 .

[4]  I. A. Koutrouvelis,et al.  Estimation in the Pearson type 3 distribution , 1999 .

[5]  Enrique Castillo,et al.  The use of conditionally conjugate priors in the study of ratios of Gamma scale parameters , 1998 .

[6]  A. Desmond,et al.  A comparison of likelihood and bayesian inference for the threshold parameter in the inverse gaussian distribution , 1998 .

[7]  H. N. Nagaraja,et al.  The Inverse Gaussian Distribution: A Case Study in Exponential Families (V. Seshadri) , 1996, SIAM Rev..

[8]  A. Hadi,et al.  A method for estimating parameters and quantiles of distributions of continuous random variables , 1995 .

[9]  B. Arnold,et al.  A first course in order statistics , 1994 .

[10]  V. Seshadri Applied Nonlinear Dynamics: Analytical, Computational and Experimental Methods (Ali H. Nayfeh and Balakumar Balachandran) , 2022 .

[11]  D. Farnsworth A First Course in Order Statistics , 1993 .

[12]  P. Sen,et al.  Order statistics and inference : estimation methods , 1992 .

[13]  Jee Soo Kim Parameter Estimation in Reliability and Life Span Models , 1991 .

[14]  J. L. Folks Inverse Gaussian Distribution , 2004 .

[15]  J. Leroy Folks,et al.  The Inverse Gaussian Distribution: Theory: Methodology, and Applications , 1988 .

[16]  A. Cohen,et al.  Modified Moment Estimation for the Three-Parameter Inverse Gaussian Distribution , 1985 .

[17]  Betty Jones Whitten,et al.  Modified Moment Estimation for the Three-Parameter Weibull Distribution , 1984 .

[18]  On the asymptotic efficiency of moment and maximum likelihood estimators in the three-parameter inverse gaussian distribution , 1984 .

[19]  Betty Jones Whitten,et al.  Modified maximum likelihood and modified moment estimators for the three-parameter inverse gaussian distribution , 1984 .

[20]  Russell C. H. Cheng,et al.  Maximum likelihood Estimation of Parameters in the Inverse Gaussian Distribution, With Unknown Origin , 1981 .

[21]  F. Downton,et al.  Statistical analysis of reliability and life-testing models : theory and methods , 1992 .

[22]  P. Billingsley,et al.  Probability and Measure , 1980 .

[23]  J. L. Folks,et al.  The Inverse Gaussian Distribution and its Statistical Application—A Review , 1978 .

[24]  Richard E. Barlow,et al.  Statistical Analysis of Reliability and Life Testing Models , 1975 .

[25]  J. L. Folks,et al.  Estimation of the Inverse Gaussian Distribution Function , 1974 .

[26]  Masatake Mori,et al.  Double Exponential Formulas for Numerical Integration , 1973 .

[27]  M. T. Wasan,et al.  Tables of Inverse Gaussian Percentage Points , 1969 .

[28]  J. Andel Sequential Analysis , 2022, The SAGE Encyclopedia of Research Design.

[29]  M. T. Wasan On an inverse Gaussian process , 1968 .

[30]  M. Tweedie Statistical Properties of Inverse Gaussian Distributions. II , 1957 .

[31]  E. L. Lehmann,et al.  Theory of point estimation , 1950 .