Lack of dissipativity is not symplecticness
暂无分享,去创建一个
[1] Wojciech Rozmus,et al. A symplectic integration algorithm for separable Hamiltonian functions , 1990 .
[2] Robert D. Skeel,et al. Explicit canonical methods for Hamiltonian systems , 1992 .
[3] Y. Suris. Some properties of methods for the numerical integration of systems of the form x¨ = f ( x ) , 1989 .
[4] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[5] Y. Suris,et al. The canonicity of mappings generated by Runge-Kutta type methods when integrating the systems x¨ = - 6 U/ 6 x , 1989 .
[6] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[7] Mari Paz Calvo,et al. The Development of Variable-Step Symplectic Integrators, with Application to the Two-Body Problem , 1993, SIAM J. Sci. Comput..
[8] Mari Paz Calvo,et al. High-Order Symplectic Runge-Kutta-Nyström Methods , 1993, SIAM J. Sci. Comput..
[9] Robert D. Skeel,et al. An explicit Runge-Kutta-Nystro¨m method is canonical if and only if its adjoint is explicit , 1992 .
[10] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[11] R. Ruth,et al. Fourth-order symplectic integration , 1990 .
[12] Ben P. Sommeijer,et al. Explicit Runge-Kutta (-Nyström) methods with reduced phase errors for computing oscillating solutions , 1987 .
[13] R. McLachlan,et al. The accuracy of symplectic integrators , 1992 .
[14] J. M. Sanz-Serna,et al. Order conditions for canonical Runge-Kutta-Nyström methods , 1992 .