Piezoelectric energy harvester under parametric excitation: A theoretical and experimental investigation

In the present work, both theoretical and experimental investigation of a vertical cantilever beam–based piezoelectric energy harvester are carried out under principal parametric resonance condition. A piezoelectric patch is attached near the fixed end of the cantilever beam along with an attached mass positioned at an arbitrary location. The extended Hamilton’s principle is used to derive the spatio-temporal equation of motion, and generalized Galerkin’s approximation is used to obtain the temporal nonlinear electromechanical governing equation of motion. The method of multiple scales is used to find the reduced modulation equations. Due to large transverse deflection and effect of rotary inertia of the attached mass, the system exhibits cubic and inertial nonlinearities. An experimental setup with slider crank mechanism–based shaker and a harvester consisting of a cantilever beam with piezoelectric patch and attached mass is designed and developed. The challenges posed by parametric resonance in crack development in the PZT and in the beam are reported. The theoretical and experimental output voltage and the power obtained are found to be in good agreement. Furthermore, a qualitative and quantitative comparative study of 17 energy harvesters has been carried out, and the normalized power densities have been compared.

[1]  Michael Faraday,et al.  XVII. On a peculiar class of acoustical figures; and on certain forms assumed by groups of particles upon vibrating elastic surfaces , 1831, Philosophical Transactions of the Royal Society of London.

[2]  E. Mathieu Mémoire sur le mouvement vibratoire d'une membrane de forme elliptique. , 1868 .

[3]  W. E. Baker,et al.  Air and internal damping of thin cantilever beams , 1967 .

[4]  John Dugundji,et al.  Lateral Bending-Torsion Vibrations of a Thin Beam Under Parametric Excitation , 1973 .

[5]  Matthew P. Cartmell,et al.  Simultaneous combination resonances in a parametrically excited cantilever beam , 1987 .

[6]  A. H. Nayfeh,et al.  The Non-Linear Response of a Slender Beam Carrying a Lumped Mass to a Principal Parametric Excitation: Theory and Experiment , 1989 .

[7]  Matthew P. Cartmell,et al.  The equations of motion for a parametrically excited cantilever beam , 1990 .

[8]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[9]  James D. Meindl,et al.  Low power microelectronics: retrospect and prospect , 1995, Proc. IEEE.

[10]  Steven R. Bishop,et al.  Nonlinear heave-roll coupling and ship rolling , 1995 .

[11]  M. P. Païdoussis,et al.  NONLINEAR ANALYSIS OF THE PARAMETRIC RESONANCES OF A PLANAR FLUID-CONVEYING CANTILEVERED PIPE , 1996 .

[12]  Balakumar Balachandran,et al.  Experimental Verification of the Importance of The Nonlinear Curvature in the Response of a Cantilever Beam , 1994 .

[13]  Ali H. Nayfeh,et al.  Nonlinear Nonplanar Dynamics of Parametrically Excited Cantilever Beams , 1998 .

[14]  Santosha K. Dwivedy,et al.  Non-linear dynamics of a slender beam carrying a lumped mass with principal parametric and internal resonances , 1999 .

[15]  A. Tondl,et al.  On the problem of self-excited vibration quenching by means of parametric excitation , 2003 .

[16]  Santosha K. Dwivedy,et al.  SIMULTANEOUS COMBINATION, PRINCIPAL PARAMETRIC AND INTERNAL RESONANCES IN A SLENDER BEAM WITH A LUMPED MASS: THREE-MODE INTERACTIONS , 2001 .

[17]  Ferdinand Verhulst,et al.  Suppressing Flow-Induced Vibrations by Parametric Excitation , 2003 .

[18]  Francois Costa,et al.  Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system , 2004 .

[19]  Kimberly L. Turner,et al.  Application of parametric resonance amplification in a single-crystal silicon micro-oscillator based mass sensor , 2005 .

[20]  Raouf A. Ibrahim,et al.  Flutter suppression of a plate-like wing via parametric excitation , 2006 .

[21]  Henry A. Sodano,et al.  A review of power harvesting using piezoelectric materials (2003–2006) , 2007 .

[22]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[23]  Horst Ecker,et al.  Enhanced damping of a cantilever beam by axial parametric excitation , 2008 .

[24]  Daniel J. Inman,et al.  Energy Harvesting Technologies , 2008 .

[25]  T. X. Wu,et al.  Parametric excitation of wheel/track system and its effects on rail corrugation , 2008 .

[26]  Daniel J. Inman,et al.  A Distributed Parameter Electromechanical Model for Cantilevered Piezoelectric Energy Harvesters , 2008 .

[27]  Steven W. Shaw,et al.  Mechanical Domain Parametric Amplification , 2008 .

[28]  Daniel J. Inman,et al.  Modeling of Piezoelectric Energy Harvesting from an L-shaped Beam-mass Structure with an Application to UAVs , 2009 .

[29]  Thiago Seuaciuc-Osório,et al.  Investigation of Power Harvesting via Parametric Excitations , 2009 .

[30]  Ivana Kovacic,et al.  Special issue on Parametric Excitation: Applications in science and engineering , 2012 .

[31]  Horst Ecker,et al.  Vibration suppression and energy transfer by parametric excitation in drive systems , 2012 .

[32]  Muhammad R. Hajj,et al.  Global nonlinear distributed-parameter model of parametrically excited piezoelectric energy harvesters , 2012 .

[33]  Grzegorz Litak,et al.  Non-linear piezoelectric vibration energy harvesting from a vertical cantilever beam with tip mass , 2012 .

[34]  Henk Nijmeijer,et al.  Parametric resonance in dynamical systems , 2012 .

[35]  Jean W. Zu,et al.  Broadband energy harvesting through a piezoelectric beam subjected to dynamic compressive loading , 2013 .

[36]  Kenichi Soga,et al.  A parametrically excited vibration energy harvester , 2014 .

[37]  Yu Jia,et al.  An auto-parametrically excited vibration energy harvester , 2014 .

[38]  M. Friswell,et al.  Non-linear energy harvesting from coupled impacting beams , 2015 .

[39]  Alexander H. Slocum,et al.  Robust energy harvesting from walking vibrations by means of nonlinear cantilever beams , 2015 .

[40]  Alper Erturk,et al.  Nonlinear M-shaped broadband piezoelectric energy harvester for very low base accelerations: primary and secondary resonances , 2015 .

[41]  Emiliano Rustighi,et al.  An experimentally validated parametrically excited vibration energy harvester with time-varying stiffness , 2015, Smart Structures.

[42]  Gursel Alici,et al.  Design and development of a parametrically excited nonlinear energy harvester , 2016 .

[43]  Franziska Frankfurter,et al.  Theory Of Machines And Mechanisms , 2016 .

[44]  John A. Rogers,et al.  Recent progress in flexible and stretchable piezoelectric devices for mechanical energy harvesting, sensing and actuation , 2016 .

[45]  A. Seshia,et al.  Twenty-Eight Orders of Parametric Resonance in a Microelectromechanical Device for Multi-band Vibration Energy Harvesting , 2016, Scientific Reports.

[46]  Kon-Well Wang,et al.  Leveraging nonlinear saturation-based phenomena in an L-shaped vibration energy harvesting system , 2016 .

[47]  Elvio Bonisoli,et al.  Energy harvesting using parametric resonant system due to time-varying damping , 2016 .

[48]  Roman V. Bobryk,et al.  On enhancement of vibration-based energy harvesting by a random parametric excitation , 2016 .

[49]  Gursel Alici,et al.  Design of an enhanced wideband energy harvester using a parametrically excited array , 2017 .

[50]  Homer Rahnejat,et al.  Broadband energy harvesting from parametric vibrations of a class of nonlinear Mathieu systems , 2017 .

[51]  Dominique Siegert,et al.  Finite strain effects in piezoelectric energy harvesters under direct and parametric excitations , 2017 .

[52]  M. Hajj,et al.  Nonlinear performances of an autoparametric vibration-based piezoelastic energy harvester , 2017 .

[53]  W. Qin,et al.  Coherence resonance of a magnet-induced buckled piezoelectric energy harvester under stochastic parametric excitation , 2017 .

[54]  Samir A. Emam,et al.  Exploiting the subharmonic parametric resonances of a buckled beam for vibratory energy harvesting , 2018, Meccanica.

[55]  Weihua Li,et al.  Design, Fabrication, and Test of a Coupled Parametric–Transverse Nonlinearly Broadband Energy Harvester , 2018, IEEE Transactions on Energy Conversion.

[56]  J. M. Ramírez,et al.  A multi-modal energy harvesting device for low-frequency vibrations , 2018, Extreme Mechanics Letters.

[57]  Yabin Liao,et al.  Maximum power, optimal load, and impedance analysis of piezoelectric vibration energy harvesters , 2018, Smart Materials and Structures.

[58]  Yang Kuang,et al.  Parametrically excited nonlinear magnetic rolling pendulum for broadband energy harvesting , 2019, Applied Physics Letters.

[59]  S. K. Dwivedy,et al.  Nonlinear dynamics of parametrically excited piezoelectric energy harvester with 1:3 internal resonance , 2019, International Journal of Non-Linear Mechanics.

[60]  Jianguo Wang,et al.  Performance analysis of parametrically and directly excited nonlinear piezoelectric energy harvester , 2019, Archive of Applied Mechanics.

[61]  I. Kovacic Nonlinear Oscillations , 2020 .