Modeling and Fundamental Design Considerations for Portable, Wearable and Implantable Electronic Biosensors

Dak, Piyush PhD, Purdue University, August 2016. Modeling and Fundamental Design Considerations for Portable, Wearable and Implantable Electronic Biosensors. Major Professor: Muhammad Ashraful Alam. Chronic diseases such as cancer, diabetes, acquired immune deficiency syndrome (AIDS), etc. are leading causes of mortality all over the world. Portable, wearable and implantable biosensors can go a long way in preventing these premature deaths by frequent or continuous self-monitoring of vital health parameters. Integration of different laboratory operations, such as mixing, sorting, transport and sensing (conducted to perform biomedical testing) onto a chip will allow development of portable hand-held diagnostic devices. In addition, if these device are flexible and/or bio-compatible, then these could either be worn as part of clothing or implanted into body for continuous health monitoring. While considerable work has been done to evaluate and enhance sensing performance of classical diagnostic devices, electrical sensing properties of miniaturized portable, wearable and implantable diagnostic devices remain poorly understood. Thus, the need of the hour is to come up with a predictive theoretical framework that can provide design guidelines to improve the sensing performance of these devices. Towards this goal, we explore the physics and interpret experiments: 1) to manipulate small droplets for lab-on-chip portable sensors, 2) to improve the sensing performance of transition-metal dichalcogenides based flexible wearable sensors, 3) to determine the performance trade-offs in hydrogel based implantable biochemical sensors, and 4) to develop compact models for system level integration of biosensors. The guidelines resulting from this framework can be used to design and optimize the performance of these next-generation sensors.

[1]  Sergio Martinoia,et al.  ION SENSITIVE FIELD EFFECT TRANSISTOR ( ISFET ) MODEL IMPLEMENTED IN SPICE , 2007 .

[2]  P. Bergveld The development and application of FET-based biosensors. , 1986, Biosensors.

[3]  Shyamal Patel,et al.  A review of wearable sensors and systems with application in rehabilitation , 2012, Journal of NeuroEngineering and Rehabilitation.

[4]  Teodor Veres,et al.  Integration and detection of biochemical assays in digital microfluidic LOC devices. , 2010, Lab on a chip.

[5]  N. Aluru,et al.  A chemo-electro-mechanical mathematical model for simulation of pH sensitive hydrogels , 2004 .

[6]  C. Dimitrakopoulos,et al.  Wafer-Scale Graphene Integrated Circuit , 2011, Science.

[7]  A. Radenović,et al.  Single-layer MoS2 transistors. , 2011, Nature nanotechnology.

[8]  H.-J. Park,et al.  A nonquasi-static MOSFET model for SPICE-transient analysis , 1989 .

[9]  D. Yoon,et al.  Flexible glucose sensor using CVD-grown graphene-based field effect transistor. , 2012, Biosensors & bioelectronics.

[10]  V. Khutoryanskiy,et al.  Biomedical applications of hydrogels: A review of patents and commercial products , 2015 .

[11]  K. Banerjee,et al.  Correction to MoS2 Field-Effect Transistor for Next-Generation Label-Free Biosensors , 2014 .

[12]  D. Grahame The electrical double layer and the theory of electrocapillarity. , 1947, Chemical reviews.

[13]  P Bergveld,et al.  Development, operation, and application of the ion-sensitive field-effect transistor as a tool for electrophysiology. , 1972, IEEE transactions on bio-medical engineering.

[14]  B. Amsden,et al.  Solute Diffusion within Hydrogels. Mechanisms and Models , 1998 .

[15]  A. Hierlemann,et al.  CMOS microelectrode array for the monitoring of electrogenic cells. , 2004, Biosensors & bioelectronics.

[16]  Wen-Yaw Chung,et al.  Study on extended gate field effect transistor with tin oxide sensing membrane , 2000 .

[17]  G. Whitesides,et al.  Patterned paper as a platform for inexpensive, low-volume, portable bioassays. , 2007, Angewandte Chemie.

[18]  V. Parsonnet,et al.  Implantable Cardiac Pacemakers Status Report and Resource Guideline , 1974 .

[19]  M. Alam,et al.  Electrostatic desalting of micro-droplets to enable novel chemical/biosensing applications , 2014, 72nd Device Research Conference.

[20]  D. Kohane,et al.  HYDROGELS IN DRUG DELIVERY: PROGRESS AND CHALLENGES , 2008 .

[21]  Ajay Agarwal,et al.  Label-free direct detection of MiRNAs with silicon nanowire biosensors. , 2009, Biosensors & bioelectronics.

[22]  Joerg Sorber,et al.  Hydrogel-based piezoresistive pH sensors: Design, simulation and output characteristics , 2006 .

[23]  Sergio Martinoia,et al.  Modelling non-ideal behaviours in H+-sensitive FETs with SPICE , 1992 .

[24]  Ken Kundert,et al.  The designer's guide to Verilog-AMS , 2004 .

[25]  Shu-Jen Yeh,et al.  Monitoring blood glucose changes in cutaneous tissue by temperature-modulated localized reflectance measurements. , 2003, Clinical chemistry.

[26]  Benjamin J Hindson,et al.  On-chip, real-time, single-copy polymerase chain reaction in picoliter droplets. , 2007, Analytical chemistry.

[27]  Darwin R. Reyes,et al.  Microwave dielectric heating of fluids in an integrated microfluidic device , 2007 .

[28]  Barry Merriman,et al.  Progress in Ion Torrent semiconductor chip based sequencing , 2012, Electrophoresis.

[29]  A. Afanasiev,et al.  A dual microscale glucose sensor on a contact lens, tested in conditions mimicking the eye , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[30]  James R Heath,et al.  Quantitative real-time measurements of DNA hybridization with alkylated nonoxidized silicon nanowires in electrolyte solution. , 2006, Journal of the American Chemical Society.

[31]  Heiko K. Cammenga,et al.  Vapor pressure and evaporation coefficient of glycerol , 1977 .

[32]  Muhammad A. Alam,et al.  Theory of "Selectivity" of label-free nanobiosensors: A geometro-physical perspective. , 2010, Journal of applied physics.

[33]  J. Jackson Charge density on thin straight wire, revisited , 2000 .

[34]  Eric M. Vogel,et al.  SPICE macromodel of silicon-on-insulator-field-effect-transistor-based biological sensors , 2012 .

[35]  D. Kimbrough Heat Capacity, Body Temperature, and Hypothermia , 1998 .

[36]  Rafael Yuste,et al.  Nanotools for neuroscience and brain activity mapping. , 2013, ACS nano.

[37]  S. Martinoia,et al.  A behavioral macromodel of the ISFET in SPICE , 2000 .

[38]  R. G. Picknett,et al.  The evaporation of sessile or pendant drops in still air , 1977 .

[39]  Likun Zhu,et al.  An on-demand microfluidic hydrogen generator with self-regulated gas generation and self-circulated reactant exchange with a rechargeable reservoir , 2011 .

[40]  Yu-Te Liao,et al.  A 3-$\mu\hbox{W}$ CMOS Glucose Sensor for Wireless Contact-Lens Tear Glucose Monitoring , 2012, IEEE Journal of Solid-State Circuits.

[41]  Inkyu Park,et al.  Selective surface functionalization of silicon nanowires via nanoscale joule heating. , 2007, Nano letters.

[42]  T. Ha,et al.  Probing single-stranded DNA conformational flexibility using fluorescence spectroscopy. , 2004, Biophysical journal.

[43]  Yu-Qing Miao,et al.  Impedimetric biosensors. , 2004, Journal of bioscience and bioengineering.

[44]  B. Kang,et al.  Dynamical modeling and experimental evidence on the swelling/deswelling behaviors of pH sensitive hydrogels , 2008 .

[45]  Heung Cho Ko,et al.  Highly flexible and transparent multilayer MoS2 transistors with graphene electrodes. , 2013, Small.

[46]  Peter J. Yunker,et al.  Suppression of the coffee-ring effect by shape-dependent capillary interactions , 2011, Nature.

[47]  J. Vogt,et al.  Soft contact lens polymers: an evolution. , 2001, Biomaterials.

[48]  Thomas Wallmersperger,et al.  Non-linear Effects in Hydrogel-based Chemical Sensors: Experiment and Modeling , 2009 .

[49]  G. Gerlach,et al.  Modeling and simulation of pH-sensitive hydrogels , 2011 .

[50]  Glen McHale,et al.  Evaporation of microdroplets and the wetting of solid-surfaces , 1995 .

[51]  Jin-Woo Han,et al.  Double-gate nanowire field effect transistor for a biosensor. , 2010, Nano letters.

[52]  Gwo-Bin Lee,et al.  Integrated microfluidic systems for cell lysis, mixing/pumping and DNA amplification , 2005 .

[53]  P Bergveld,et al.  Study of chemically induced pressure generation of hydrogels under isochoric conditions using a microfabricated device. , 2004, The Journal of chemical physics.

[54]  Thomas Wallmersperger,et al.  Piezoresistive biochemical sensors based on hydrogels , 2010 .

[55]  A. Grodzinsky,et al.  The kinetics of chemically induced nonequilibrium swelling of articular cartilage and corneal stroma. , 1987, Journal of biomechanical engineering.

[56]  Yuandong Gu,et al.  A hydrogel-based wireless chemical sensor , 2004, 17th IEEE International Conference on Micro Electro Mechanical Systems. Maastricht MEMS 2004 Technical Digest.

[57]  M Graf,et al.  Micro hot plate-based sensor array system for the detection of environmentally relevant gases. , 2006, Analytical chemistry.

[58]  S. Garimella,et al.  Nanotextured superhydrophobic electrodes enable detection of attomolar-scale DNA concentration within a droplet by non-faradaic impedance spectroscopy. , 2013, Lab on a chip.

[59]  Molecular Biology and Biotechnology. , 2001, Drug discovery today.

[60]  J. Haveman,et al.  The relevance of tumour pH to the treatment of malignant disease. , 1984, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[61]  Siarhei Vishniakou,et al.  Petri dish PCR: laser-heated reactions in nanoliter droplet arrays. , 2009, Lab on a chip.

[62]  Rashid Bashir,et al.  Nanoscale thickness double-gated field effect silicon sensors for sensitive pH detection in fluid , 2008 .

[63]  D. Janes,et al.  Device considerations for development of conductance-based biosensors. , 2009, Journal of applied physics.

[64]  Jaroslaw Drelich,et al.  Hydrophilic and superhydrophilic surfaces and materials , 2011 .

[65]  Piet Bergveld,et al.  On the impedance of the silicon dioxide/electrolyte interface , 1983 .

[66]  Helen Song,et al.  Reactions in Droplets in Microfluidic Channels , 2007 .

[67]  Chan Woo Park,et al.  Direct label-free electrical immunodetection in human serum using a flow-through-apparatus approach with integrated field-effect transistors. , 2010, Biosensors & bioelectronics.

[68]  Mark E. Thompson,et al.  Label-free, electrical detection of the SARS virus N-protein with nanowire biosensors utilizing antibody mimics as capture probes. , 2009, ACS nano.

[69]  Junseok Chae,et al.  Low Cytotoxicity and Genotoxicity of Two-Dimensional MoS2 and WS2. , 2016, ACS biomaterials science & engineering.

[70]  Babak Ziaie,et al.  Hydrogel-based microsensors for wireless chemical monitoring , 2009, Biomedical microdevices.

[71]  G. Coté,et al.  Noninvasive glucose sensing utilizing a digital closed-loop polarimetric approach , 1997, IEEE Transactions on Biomedical Engineering.

[72]  S. Sahoo,et al.  Surface energy engineering for tunable wettability through controlled synthesis of MoS2. , 2014, Nano letters.

[73]  A. Lee,et al.  Droplet microfluidics. , 2008, Lab on a chip.

[74]  Francis Moussy,et al.  A long-term flexible minimally-invasive implantable glucose biosensor based on an epoxy-enhanced polyurethane membrane. , 2006, Biosensors & bioelectronics.

[75]  Axel Scherer,et al.  Thermal management in microfluidics using micro-Peltier junctions , 2005 .

[76]  Paul V Braun,et al.  Linear and Fast Hydrogel Glucose Sensor Materials Enabled by Volume Resetting Agents , 2014, Advanced materials.

[77]  K. Y. Lam,et al.  Modeling of ionic transport in electric-stimulus-responsive hydrogels , 2007 .

[78]  Rong Yang,et al.  Biocompatible inorganic fullerene-like molybdenum disulfide nanoparticles produced by pulsed laser ablation in water. , 2011, ACS nano.

[79]  Carl T Wittwer,et al.  High-resolution DNA melting analysis for simple and efficient molecular diagnostics. , 2007, Pharmacogenomics.

[80]  K. Audus,et al.  Digital microfluidics. , 2012, Annual review of analytical chemistry.

[81]  Juan Santana,et al.  A capacitive MEMS Veriloga-Based Sensor System for Building Integrity Monitoring , 2011, Int. J. Inf. Acquis..

[82]  Marco Lazzarino,et al.  Fast detection of biomolecules in diffusion-limited regime using micromechanical pillars. , 2011, ACS nano.

[83]  Martin L. Yarmush,et al.  Kinetics of electrically and chemically induced swelling in polyelectrolyte gels , 1990 .

[84]  S Tomić,et al.  Dielectric relaxation of DNA aqueous solutions. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[85]  Ivan Novak,et al.  How Severe Acidosis Can a Human Survive? Successful Hemofiltration Use , 2007 .

[86]  J. Eijkel,et al.  A general model to describe the electrostatic potential at electrolyte oxide interfaces , 1996 .

[87]  Hiroyuki Kudo,et al.  Soft contact lens biosensor for in situ monitoring of tear glucose as non-invasive blood sugar assessment. , 2011, Talanta.

[88]  Rashid Bashir,et al.  Silicon nanowires with high-k hafnium oxide dielectrics for sensitive detection of small nucleic acid oligomers. , 2012, ACS nano.

[89]  Bernard P. Puc,et al.  An integrated semiconductor device enabling non-optical genome sequencing , 2011, Nature.

[90]  R. Chang,et al.  Laser diagnostics for droplet characterization: Application of morphology dependent resonances , 1996 .

[91]  Piet Bergveld,et al.  Thirty years of ISFETOLOGY ☆: What happened in the past 30 years and what may happen in the next 30 years , 2003 .

[92]  A. Afanasiev,et al.  A soft hydrogel contact lens with an encapsulated sensor for tear glucose monitoring , 2012, 2012 IEEE 25th International Conference on Micro Electro Mechanical Systems (MEMS).

[93]  Jonghyun Go,et al.  Theory of signal and noise in double-gated nanoscale electronic pH sensors. , 2012, Journal of applied physics.

[94]  Seokheun Choi,et al.  A Physisorbed Interface Design of Biomolecules for Selective and Sensitive Protein Detection , 2010 .

[95]  Andreas Richter,et al.  Characterization of a microgravimetric sensor based on pH sensitive hydrogels , 2004 .

[96]  Yang‐Kyu Choi,et al.  A pH sensor with a double-gate silicon nanowire field-effect transistor , 2013 .

[97]  R. Wallace,et al.  Surface Defects on Natural MoS2. , 2015, ACS applied materials & interfaces.

[98]  Hong June Park,et al.  A charge conserving non-quasi-state (NQS) MOSFET model for SPICE transient analysis , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[99]  P.K. Chatterjee,et al.  An Investigation of the Charge Conservation Problem for MOSFET Circuit Simulation , 1983, IEEE Journal of Solid-State Circuits.

[100]  B. Hong,et al.  Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials , 2015 .

[101]  Y. Fouillet,et al.  Ionic liquid droplet as e-microreactor. , 2006, Analytical chemistry.

[102]  Y. Rim,et al.  Recent Progress in Materials and Devices toward Printable and Flexible Sensors , 2016, Advanced materials.

[103]  Oguz H. Elibol,et al.  Localized heating on silicon field effect transistors: device fabrication and temperature measurements in fluid. , 2009, Lab on a chip.

[104]  D. Neumaier,et al.  Flexible Hall sensors based on graphene. , 2016, Nanoscale.

[105]  M. Gouy,et al.  Sur la constitution de la charge électrique à la surface d'un électrolyte , 1910 .

[106]  Fred J Sigworth,et al.  Importance of the Debye screening length on nanowire field effect transistor sensors. , 2007, Nano letters.

[107]  M. Bazant,et al.  Steric effects in the dynamics of electrolytes at large applied voltages. I. Double-layer charging. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[108]  R. B. Montgomery VISCOSITY AND THERMAL CONDUCTIVITY OF AIR AND DIFFUSIVITY OF WATER VAPOR IN AIR , 1947 .

[109]  D. Chapman,et al.  LI. A contribution to the theory of electrocapillarity , 1913 .

[110]  Costas P. Grigoropoulos,et al.  Selective and localized laser annealing effect for high-performance flexible multilayer MoS2 thin-film transistors , 2014, Nano Research.

[111]  W. Seitz,et al.  Single fiber-optic pH sensor based on changes in reflection accompanying polymer swelling. , 1994, Analytical chemistry.

[112]  Chad A Mirkin,et al.  The bio-barcode assay for the detection of protein and nucleic acid targets using DTT-induced ligand exchange , 2006, Nature Protocols.

[113]  Robert Hull,et al.  Properties of Crystalline Silicon , 1999 .

[114]  Muhammad A. Alam,et al.  Screening-limited response of nanobiosensors. , 2007, Nano letters.

[115]  Jeff Mellen,et al.  High-Throughput Droplet Digital PCR System for Absolute Quantitation of DNA Copy Number , 2011, Analytical chemistry.

[116]  C. Kim,et al.  An integrated digital microfluidic chip for multiplexed proteomic sample preparation and analysis by MALDI-MS. , 2006, Lab on a chip.

[117]  M. Bazant,et al.  Induced-charge electro-osmosis , 2003, Journal of Fluid Mechanics.

[118]  C. Pace,et al.  A summary of the measured pK values of the ionizable groups in folded proteins , 2008, Protein science : a publication of the Protein Society.

[119]  M. Lesho,et al.  A method for studying swelling kinetics based on measurement of electrical conductivity , 1998 .

[120]  R. Deegan,et al.  Pattern formation in drying drops , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[121]  J. Kong,et al.  Integrated Circuits Based on Bilayer MoS , 2012 .

[122]  T. Jones,et al.  Moving droplets between closed and open microfluidic systems. , 2015, Lab on a chip.

[123]  Kinam Kim,et al.  High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals , 2012, Nature Communications.

[124]  D. Beebe,et al.  Equilibrium swelling and kinetics of pH-responsive hydrogels: models, experiments, and simulations , 2002 .

[125]  Xin Wu,et al.  Selective Sensing of Saccharides Using Simple Boronic Acids and Their Aggregates , 2013 .

[126]  M. F. McCurley,et al.  An optical biosensor using a fluorescent, swelling sensing element , 1994 .

[127]  Wei Zhao Predictive technology modeling for scaled CMOS , 2009 .

[128]  J. Wei,et al.  Distributed capacitance of planar electrodes in optic and acoustic surface wave devices , 1977 .

[129]  Sang Joon John Lee,et al.  Microfabrication for Microfluidics , 2010 .

[130]  Qinghua Zhao,et al.  Biocompatible PEGylated MoS2 nanosheets: controllable bottom-up synthesis and highly efficient photothermal regression of tumor. , 2015, Biomaterials.

[131]  S. Garner,et al.  Flexible glass substrates for roll-to-roll manufacturing , 2011 .

[132]  Rashid Bashir,et al.  Electrical characterization of DNA molecules in solution using impedance measurements , 2008 .

[133]  Andreas Hierlemann,et al.  A Verilog-A model for silicon nanowire biosensors: From theory to verification , 2013 .

[134]  Nitin K. Rajan,et al.  Optimal signal-to-noise ratio for silicon nanowire biochemical sensors. , 2011, Applied physics letters.

[135]  Wouter Olthuis,et al.  Hydrogel-based devices for biomedical applications , 2010 .

[136]  W. Grange,et al.  Rapid and label-free nanomechanical detection of biomarker transcripts in human RNA , 2006, Nature nanotechnology.

[137]  A. Shaun Francomacaro,et al.  Microfabricated conductimetric pH sensor , 1995 .

[138]  Chris Toumazou,et al.  Piet Bergveld - 40 years of ISFET technology: from neuronal sensing to DNA sequencing , 2011 .

[139]  F. Patolsky,et al.  Biorecognition layer engineering: overcoming screening limitations of nanowire-based FET devices. , 2012, Nano letters.

[140]  Thomas Wallmersperger,et al.  Coupled chemo-electro-mechanical finite element simulation of hydrogels: II. Electrical stimulation , 2008 .

[141]  Chang-Jin Kim,et al.  On chip droplet characterization: a practical, high-sensitivity measurement of droplet impedance in digital microfluidics. , 2012, Analytical chemistry.

[142]  M. Alam,et al.  Time-resolved PCA of ‘droplet impedance’ identifies DNA hybridization at nM concentration , 2015 .

[143]  T. Hiemstra,et al.  Physical chemical interpretation of primary charging behaviour of metal (hydr) oxides , 1991 .

[144]  Sergio Martinoia,et al.  Modeling H/sup +/-sensitive FETs with SPICE , 1992 .

[145]  Kenji Yasuda,et al.  Development of 1480 nm Photothermal High-Speed Real-Time Polymerase Chain Reaction System for Rapid Nucleotide Recognition , 2008 .

[146]  Andre K. Geim,et al.  The rise of graphene. , 2007, Nature materials.

[147]  Rashid Bashir,et al.  A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with immuno-capture of low numbers of Listeria monocytogenes. , 2006, Lab on a chip.

[148]  Camelia Gabriel,et al.  Dielectric parameters relevant to microwave dielectric heating , 1998 .

[149]  A. Klibanov,et al.  On the pH memory of lyophilized compounds containing protein functional groups. , 1997, Biotechnology and bioengineering.

[150]  Mark D. Losego,et al.  Hydrogel-Based Glucose Sensors: Effects of Phenylboronic Acid Chemical Structure on Response , 2013 .

[151]  M.A. Alam,et al.  Design Considerations of Silicon Nanowire Biosensors , 2007, IEEE Transactions on Electron Devices.

[152]  Fan-Gang Zeng,et al.  Cochlear Implants: System Design, Integration, and Evaluation , 2008, IEEE Reviews in Biomedical Engineering.

[153]  Rashid Bashir,et al.  Ultralocalized thermal reactions in subnanoliter droplets-in-air , 2013, Proceedings of the National Academy of Sciences.

[154]  Albena Ivanisevic,et al.  Molecular analysis of blood with micro-/nanoscale field-effect-transistor biosensors. , 2011, Small.

[155]  M. J. Deen,et al.  Noise considerations in field-effect biosensors , 2006 .

[156]  Sunil Purushothaman,et al.  Protons and single nucleotide polymorphism detection: A simple use for the Ion Sensitive Field Effect Transistor , 2006 .

[157]  G. Gerlach,et al.  Chemical and pH sensors based on the swelling behavior of hydrogels , 2005 .

[158]  V. Torchilin,et al.  "SMART" drug delivery systems: double-targeted pH-responsive pharmaceutical nanocarriers. , 2006, Bioconjugate chemistry.

[159]  W. Seitz,et al.  An optically sensitive membrane for pH based on swellable polymer microspheres in a hydrogel , 1999 .

[160]  Kohsei Takehara,et al.  High-Speed Imaging of Drops and Bubbles , 2008 .

[161]  Vivek Subramanian,et al.  Impedance sensing device enables early detection of pressure ulcers in vivo , 2015, Nature Communications.

[162]  Sorin Cristoloveanu,et al.  Frontiers of silicon-on-insulator , 2003 .

[163]  Martin Pumera,et al.  Graphene in biosensing , 2011 .

[164]  Oguz H. Elibol,et al.  Surface Immobilizable Chelator for Label-free Electrical Detection of Pyrophosphatew Chemcomm , 2022 .

[165]  L. Pisani Simple Expression for the Tortuosity of Porous Media , 2011 .

[166]  Junya Suehiro,et al.  Selective detection of bacteria by a dielectrophoretic impedance measurement method using an antibody-immobilized electrode chip , 2006 .

[167]  C. Herrmann,et al.  Biocompatibility of atomic layer-deposited alumina thin films. , 2007, Journal of biomedical materials research. Part A.

[168]  J. Randles Kinetics of rapid electrode reactions , 1947 .

[169]  Huanyu Cheng,et al.  A Physically Transient Form of Silicon Electronics , 2012, Science.

[170]  Gengfeng Zheng,et al.  Electrical detection of single viruses. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[171]  G. Gerlach,et al.  Chemical sensors based on multiresponsive block copolymer hydrogels , 2007 .

[172]  Joonhyung Lee,et al.  Two-dimensional Layered MoS2 Biosensors Enable Highly Sensitive Detection of Biomolecules , 2014, Scientific Reports.

[173]  Jae Ho Shin,et al.  Biocompatible materials for continuous glucose monitoring devices. , 2013, Chemical reviews.

[174]  R. Bashir,et al.  Electronic desalting for controlling the ionic environment in droplet-based biosensing platforms. , 2015, Applied physics letters.

[175]  Brian Litt,et al.  Drug discovery: A jump-start for electroceuticals , 2013, Nature.

[176]  Abraham Marmur,et al.  The Lotus effect: superhydrophobicity and metastability. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[177]  Jae-Hwan Choi,et al.  Electrode reactions and adsorption/desorption performance related to the applied potential in a capacitive deionization process , 2010 .

[178]  John A Rogers,et al.  Thermally Triggered Degradation of Transient Electronic Devices , 2015, Advanced materials.

[179]  Lingyan Huang,et al.  Effects of sodium ions on DNA duplex oligomers: improved predictions of melting temperatures. , 2004, Biochemistry.

[180]  Alvin U. Chen,et al.  A new method for significantly reducing drop radius without reducing nozzle radius in drop-on-demand drop production , 2002 .

[181]  Wen-Yaw Chung,et al.  Separate structure extended gate H+-ion sensitive field effect transistor on a glass substrate , 2000 .

[182]  D. Weitz,et al.  Single-cell analysis and sorting using droplet-based microfluidics , 2013, Nature Protocols.

[183]  Babak Ziaie,et al.  Diaper-embedded urinary tract infection monitoring system powered by a urine-powered battery , 2015, 2015 IEEE Biomedical Circuits and Systems Conference (BioCAS).

[184]  Alexander M. Klibanov,et al.  Enzyme-catalyzed processes in organic solvents. , 1985 .

[185]  J. Weibel,et al.  Influence of surface wettability on transport mechanisms governing water droplet evaporation. , 2014, Langmuir : the ACS journal of surfaces and colloids.

[186]  S. Garimella,et al.  Droplet evaporation dynamics on a superhydrophobic surface with negligible hysteresis. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[187]  Hanyoup Kim,et al.  Nanodroplet real-time PCR system with laser assisted heating. , 2009, Optics express.

[188]  Deji Akinwande,et al.  Two-dimensional flexible nanoelectronics , 2014, Nature Communications.

[189]  Yukio Yamada,et al.  Noninvasive blood glucose assay using a newly developed near-infrared system , 2003 .

[190]  H. P. Neves,et al.  Materials for implantable systems , 2013 .

[191]  Jonghyun Go,et al.  Extended-gate biosensors achieve fluid stability with no loss in charge sensitivity , 2013, 71st Device Research Conference.

[192]  Samuel K Sia,et al.  Commercialization of microfluidic point-of-care diagnostic devices. , 2012, Lab on a chip.

[193]  Yonggang Huang,et al.  Ultrathin conformal devices for precise and continuous thermal characterization of human skin. , 2013, Nature materials.

[194]  Numerical and Analytical Modeling to Determine Performance Tradeoffs in Hydrogel-Based pH Sensors , 2016, IEEE Transactions on Electron Devices.

[195]  Oguz H. Elibol,et al.  High-k dielectric Al2O3 nanowire and nanoplate field effect sensors for improved pH sensing , 2011, Biomedical microdevices.

[196]  D. Beebe,et al.  The present and future role of microfluidics in biomedical research , 2014, Nature.

[197]  Babak Ziaie,et al.  A hydrogel-based implantable micromachined transponder for wireless glucose measurement. , 2006, Diabetes technology & therapeutics.

[198]  Gang Jin,et al.  Covalent immobilization of proteins for the biosensor based on imaging ellipsometry. , 2004, Journal of immunological methods.

[199]  Shoji Takeuchi,et al.  Long-term in vivo glucose monitoring using fluorescent hydrogel fibers , 2011, Proceedings of the National Academy of Sciences.

[200]  H. Ju,et al.  Sub-femtomolar electrochemical detection of DNA using surface circular strand-replacement polymerization and gold nanoparticle catalyzed silver deposition for signal amplification. , 2013, Biosensors & bioelectronics.

[201]  K. Banerjee,et al.  Proposal for tunnel-field-effect-transistor as ultra-sensitive and label-free biosensors , 2012 .

[202]  Toyoichi Tanaka,et al.  Kinetics of swelling of gels , 1979 .

[203]  A. Winter,et al.  A study of the evaporation rates of small water drops placed on a solid surface , 1989 .

[204]  Mark A. Reed,et al.  Label-free immunodetection with CMOS-compatible semiconducting nanowires , 2007, Nature.

[205]  Shesha H. Jayaram,et al.  Development of an equivalent circuit model for electrochemical double layer capacitors (EDLCs) with distinct electrolytes , 2014 .

[206]  Lu Wang,et al.  Functionalized MoS(2) nanosheet-based field-effect biosensor for label-free sensitive detection of cancer marker proteins in solution. , 2014, Small.

[207]  Aaron R Wheeler,et al.  A microfluidic platform for complete mammalian cell culture. , 2010, Lab on a chip.

[208]  Marc J. Assael,et al.  Standard Reference Data for the Thermal Conductivity of Water , 1995 .

[209]  James F Rusling,et al.  Highly sensitive and reusable Pt-black microfluidic electrodes for long-term electrochemical sensing. , 2010, Biosensors & bioelectronics.

[210]  Zhaohui Zhong,et al.  Detection beyond the Debye screening length in a high-frequency nanoelectronic biosensor. , 2012, Nano letters.

[211]  A. Hoffman Hydrogels for Biomedical Applications , 2001, Advanced drug delivery reviews.

[212]  J P Landers,et al.  Polymerase chain reaction in polymeric microchips: DNA amplification in less than 240 seconds. , 2001, Analytical biochemistry.

[213]  Francis Moussy,et al.  Use of hydrogel coating to improve the performance of implanted glucose sensors. , 2008, Biosensors & bioelectronics.

[214]  Rashid Bashir,et al.  Droplet-based Biosensing for Lab-on-a-Chip, Open Microfluidics Platforms , 2016, Biosensors.

[215]  Norman F. Sheppard,et al.  Design of a conductimetric pH microsensor based on reversibly swelling hydrogels , 1993 .

[216]  Chad A Mirkin,et al.  A bio-barcode assay for on-chip attomolar-sensitivity protein detection. , 2006, Lab on a chip.

[217]  C. Lieber,et al.  Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species , 2001, Science.

[218]  Jonghyun Go,et al.  The future scalability of pH-based genome sequencers: A theoretical perspective , 2013 .

[219]  David J. Mooney,et al.  Label-free biomarker detection from whole blood , 2009, 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology.

[220]  Piyush Dak,et al.  Non-faradaic impedance characterization of an evaporating droplet for microfluidic and biosensing applications. , 2014, Lab on a chip.

[221]  Andrea Toma,et al.  Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures , 2011 .

[222]  D. Mooney,et al.  Hydrogels for tissue engineering. , 2001, Chemical reviews.

[223]  Thomas Wallmersperger,et al.  Coupled multifield formulation for ionic polymer gels in electric fields , 2001, SPIE Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[224]  Pengfei Dai,et al.  Enhanced sensing of nucleic acids with silicon nanowire field effect transistor biosensors. , 2012, Nano letters.

[225]  C. Gabriel,et al.  Dielectric behavior of DNA solution at radio and microwave frequencies (at 20 degrees C). , 1984, Biophysical journal.

[226]  Cuiling Zhang,et al.  A fluorescence-based colorimetric droplet platform for biosensor application to the detection of α-fetoprotein. , 2012, The Analyst.

[227]  Muhammad A. Alam,et al.  Physics-based compact models for insulated-gate field-effect biosensors, landau-transistors, and thin-film solar cells , 2015, 2015 IEEE Custom Integrated Circuits Conference (CICC).

[228]  Neelesh A Patankar,et al.  Anisotropy in the wetting of rough surfaces. , 2005, Journal of colloid and interface science.

[229]  A. van den Berg,et al.  Label-free, high-throughput, electrical detection of cells in droplets. , 2012, The Analyst.

[230]  R. Fair,et al.  An integrated digital microfluidic lab-on-a-chip for clinical diagnostics on human physiological fluids. , 2004, Lab on a chip.

[231]  Gengfeng Zheng,et al.  Multiplexed electrical detection of cancer markers with nanowire sensor arrays , 2005, Nature Biotechnology.

[232]  Stephen McDonnell,et al.  Defect-dominated doping and contact resistance in MoS2. , 2014, ACS nano.

[233]  Paul J. A. Kenis,et al.  Characterization and application of electrodeposited Pt, Pt/Pd, and Pd catalyst structures for direct formic acid micro fuel cells , 2005 .

[234]  J. Lyklema,et al.  Measurement and Interpretation of Electrokinetic Phenomena (IUPAC Technical Report) , 2005 .

[235]  Young Ki Hong,et al.  High‐Mobility Transistors Based on Large‐Area and Highly Crystalline CVD‐Grown MoSe2 Films on Insulating Substrates , 2016, Advanced materials.

[236]  Francis Moussy,et al.  A novel porous collagen scaffold around an implantable biosensor for improving biocompatibility. II. Long-term in vitro/in vivo sensitivity characteristics of sensors with NDGA- or GA-crosslinked collagen scaffolds. , 2010, Journal of biomedical materials research. Part A.

[237]  Oguz H. Elibol,et al.  Silicon field effect transistors as dual-use sensor-heater hybrids. , 2011, Analytical chemistry.

[238]  N. Peppas,et al.  Glucose-Responsive Hydrogels , 2006 .

[239]  Howard Rosenbaum,et al.  Effects of reading proficiency on embedded stem priming in primary school children , 2021 .

[240]  N. Mortensen,et al.  Screening model for nanowire surface-charge sensors in liquid , 2007, 0708.2001.

[241]  M. D. Rooij,et al.  Electrochemical Methods: Fundamentals and Applications , 2003 .

[242]  Using competitive protein adsorption to measure fibrinogen in undiluted human serum , 2010 .

[243]  Nancy L Allbritton,et al.  CRITICAL REVIEW www.rsc.org/loc | Lab on a Chip Analysis of single mammalian cells on-chip , 2006 .

[244]  Muhammad A. Alam,et al.  Performance limits of nanobiosensors , 2006 .