Heritable genome editing in C. elegans via a CRISPR-Cas9 system

[1]  Melissa M. Harrison,et al.  Genome Engineering of Drosophila with the CRISPR RNA-Guided Cas9 Nuclease , 2013, Genetics.

[2]  Rudolf Jaenisch,et al.  One-Step Generation of Mice Carrying Mutations in Multiple Genes by CRISPR/Cas-Mediated Genome Engineering , 2013, Cell.

[3]  George M. Church,et al.  Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems , 2013, Nucleic acids research.

[4]  Feng Zhang,et al.  CRISPR-assisted editing of bacterial genomes , 2013, Nature Biotechnology.

[5]  Jeffry D. Sander,et al.  Efficient In Vivo Genome Editing Using RNA-Guided Nucleases , 2013, Nature Biotechnology.

[6]  Seung Woo Cho,et al.  Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease , 2013, Nature Biotechnology.

[7]  James E. DiCarlo,et al.  RNA-Guided Human Genome Engineering via Cas9 , 2013, Science.

[8]  Le Cong,et al.  Multiplex Genome Engineering Using CRISPR/Cas Systems , 2013, Science.

[9]  Jennifer Doudna,et al.  RNA-programmed genome editing in human cells , 2013, eLife.

[10]  Mary Goldman,et al.  The UCSC Genome Browser database: extensions and updates 2013 , 2012, Nucleic Acids Res..

[11]  R. Barrangou,et al.  Cas9–crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria , 2012, Proceedings of the National Academy of Sciences.

[12]  J. Doudna,et al.  A Programmable Dual-RNA–Guided DNA Endonuclease in Adaptive Bacterial Immunity , 2012, Science.

[13]  J. Doudna,et al.  RNA-guided genetic silencing systems in bacteria and archaea , 2012, Nature.

[14]  M. Davis,et al.  Improved Mos1-mediated transgenesis in C. elegans , 2012, Nature Methods.

[15]  R. Terns,et al.  CRISPR-based adaptive immune systems. , 2011, Current opinion in microbiology.

[16]  D. G. Gibson,et al.  Enzymatic assembly of DNA molecules up to several hundred kilobases , 2009, Nature Methods.

[17]  I. Chatterjee,et al.  Germline transformation of Caenorhabditis elegans by injection. , 2009, Methods in molecular biology.

[18]  M. Labouesse [Caenorhabditis elegans]. , 2003, Medecine sciences : M/S.

[19]  K. Taira,et al.  U6 promoter–driven siRNAs with four uridine 3′ overhangs efficiently suppress targeted gene expression in mammalian cells , 2002, Nature Biotechnology.

[20]  B D Hall,et al.  Purines are required at the 5' ends of newly initiated RNAs for optimal RNA polymerase III gene expression , 1996, Molecular and cellular biology.

[21]  Morris F. Maduro,et al.  Identification and cloning of unc-119, a gene expressed in the Caenorhabditis elegans nervous system. , 1995, Genetics.

[22]  G. Tocchini-Valentini,et al.  Mutational analysis of the transcription start site of the yeast tRNA(Leu3) gene. , 1995, Nucleic acids research.

[23]  V. Ambros,et al.  Efficient gene transfer in C.elegans: extrachromosomal maintenance and integration of transforming sequences. , 1991, The EMBO journal.

[24]  J. Thomas,et al.  The spliceosomal snRNAs of Caenorhabditis elegans. , 1990, Nucleic acids research.

[25]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[26]  D. Riddle,et al.  dpy-13: A nematode collagen gene that affects body shape , 1988, Cell.

[27]  B. Bainbridge,et al.  Genetics , 1981, Experientia.