VARPRISM: incorporating variant prioritization in tests of de novo mutation association

[1]  W. McMahon,et al.  A description of medical conditions in adults with autism spectrum disorder: A follow-up of the 1980s Utah/UCLA Autism Epidemiologic Study , 2016, Autism : the international journal of research and practice.

[2]  C. Baker,et al.  Genome Sequencing of Autism-Affected Families Reveals Disruption of Putative Noncoding Regulatory DNA. , 2016, American journal of human genetics.

[3]  Yujun Han,et al.  Incorporating Functional Information in Tests of Excess De Novo Mutational Load. , 2015, American journal of human genetics.

[4]  Morris Swertz,et al.  Genome-wide patterns and properties of de novo mutations in humans , 2015, Nature Genetics.

[5]  Kali T. Witherspoon,et al.  Excess of rare, inherited truncating mutations in autism , 2015, Nature Genetics.

[6]  Sayaka Hashimoto,et al.  Variability in pathogenicity prediction programs: impact on clinical diagnostics , 2014, Molecular genetics & genomic medicine.

[7]  Boris Yamrom,et al.  The contribution of de novo coding mutations to autism spectrum disorder , 2014, Nature.

[8]  Christopher S. Poultney,et al.  Synaptic, transcriptional, and chromatin genes disrupted in autism , 2014, Nature.

[9]  J. Reis-Filho,et al.  Benchmarking mutation effect prediction algorithms using functionally validated cancer-related missense mutations , 2014, Genome Biology.

[10]  Stephan J Sanders,et al.  A framework for the interpretation of de novo mutation in human disease , 2014, Nature Genetics.

[11]  Gustavo Glusman,et al.  A unified test of linkage analysis and rare-variant association for analysis of pedigree sequence data , 2014, Nature Biotechnology.

[12]  D. Geschwind,et al.  Disentangling the heterogeneity of autism spectrum disorder through genetic findings , 2014, Nature Reviews Neurology.

[13]  E. Banks,et al.  De novo mutations in schizophrenia implicate synaptic networks , 2014, Nature.

[14]  Melissa J. Landrum,et al.  RefSeq: an update on mammalian reference sequences , 2013, Nucleic Acids Res..

[15]  P. Stenson,et al.  The Human Gene Mutation Database: building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine , 2013, Human Genetics.

[16]  Joseph T. Glessner,et al.  Common variation contributes to the genetic architecture of social communication traits , 2013, Molecular Autism.

[17]  Kathryn Roeder,et al.  Integrated Model of De Novo and Inherited Genetic Variants Yields Greater Power to Identify Risk Genes , 2013, PLoS genetics.

[18]  Mark Yandell,et al.  VAAST 2.0: Improved Variant Classification and Disease-Gene Identification Using a Conservation-Controlled Amino Acid Substitution Matrix , 2013, Genetic epidemiology.

[19]  Murim Choi,et al.  De novo mutations in histone modifying genes in congenital heart disease , 2013, Nature.

[20]  Daniel H. Geschwind,et al.  QTL replication and targeted association highlight the nerve growth factor gene for nonverbal communication deficits in autism spectrum disorders , 2013, Molecular Psychiatry.

[21]  A. Toutain,et al.  The 2q37-deletion syndrome: an update of the clinical spectrum including overweight, brachydactyly and behavioural features in 14 new patients , 2012, European Journal of Human Genetics.

[22]  Kai Wang,et al.  Statistical tests of genetic association for case-control study designs. , 2012, Biostatistics.

[23]  J. Veltman,et al.  De novo mutations in human genetic disease , 2012, Nature Reviews Genetics.

[24]  Kenny Q. Ye,et al.  De Novo Gene Disruptions in Children on the Autistic Spectrum , 2012, Neuron.

[25]  Bradley P. Coe,et al.  Sporadic autism exomes reveal a highly interconnected protein network of de novo mutations , 2012, Nature.

[26]  Euan A Ashley,et al.  Performance comparison of whole-genome sequencing platforms , 2011, Nature Biotechnology.

[27]  M. G. Reese,et al.  A probabilistic disease-gene finder for personal genomes. , 2011, Genome research.

[28]  S. Lok,et al.  Increased exonic de novo mutation rate in individuals with schizophrenia , 2011, Nature Genetics.

[29]  J L Rapoport,et al.  Systematic resequencing of X-chromosome synaptic genes in autism spectrum disorder and schizophrenia , 2011, Molecular Psychiatry.

[30]  S. Levy,et al.  Exome sequencing supports a de novo mutational paradigm for schizophrenia , 2011, Nature Genetics.

[31]  Xihong Lin,et al.  Rare-variant association testing for sequencing data with the sequence kernel association test. , 2011, American journal of human genetics.

[32]  C. Betancur,et al.  Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting , 2011, Brain Research.

[33]  Christoph Lange,et al.  Common genetic variation in the GAD1 gene and the entire family of DLX homeobox genes and autism spectrum disorders , 2011, American journal of medical genetics. Part B, Neuropsychiatric genetics : the official publication of the International Society of Psychiatric Genetics.

[34]  Xikui Wang,et al.  Comparison of Wald , Score , and Likelihood Ratio Tests for Response Adaptive Designs , 2011 .

[35]  S. Ellard,et al.  Using SIFT and PolyPhen to predict loss-of-function and gain-of-function mutations. , 2010, Genetic testing and molecular biomarkers.

[36]  Jana Marie Schwarz,et al.  MutationTaster evaluates disease-causing potential of sequence alterations , 2010, Nature Methods.

[37]  H. Hakonarson,et al.  ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data , 2010, Nucleic acids research.

[38]  P. Bork,et al.  A method and server for predicting damaging missense mutations , 2010, Nature Methods.

[39]  I. Cohen,et al.  The DLX1and DLX2 genes and susceptibility to autism spectrum disorders , 2009, European Journal of Human Genetics.

[40]  Sharmila Banerjee-Basu,et al.  AutDB: a gene reference resource for autism research , 2008, Nucleic Acids Res..

[41]  H. Tager-Flusberg,et al.  Autism spectrum disorders: clinical and research frontiers , 2008, Archives of Disease in Childhood.

[42]  D. Pinto,et al.  Structural variation of chromosomes in autism spectrum disorder. , 2008, American journal of human genetics.

[43]  Kenny Q. Ye,et al.  Strong Association of De Novo Copy Number Mutations with Autism , 2007, Science.

[44]  D. Haussler,et al.  Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. , 2005, Genome research.

[45]  S. Rogers Developmental regression in autism spectrum disorders. , 2004, Mental retardation and developmental disabilities research reviews.

[46]  A. Vianna-Morgante,et al.  Does the P172H mutation at the TM4SF2 gene cause X‐linked mental retardation? , 2004, American journal of medical genetics. Part A.

[47]  S. Henikoff,et al.  Predicting deleterious amino acid substitutions. , 2001, Genome research.

[48]  A. Agresti An introduction to categorical data analysis , 1997 .

[49]  Q. Vuong Likelihood Ratio Tests for Model Selection and Non-Nested Hypotheses , 1989 .

[50]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[51]  R. Engle Wald, likelihood ratio, and Lagrange multiplier tests in econometrics , 1984 .

[52]  M. Kendall Statistical Methods for Research Workers , 1937, Nature.

[53]  R. Fisher,et al.  Statistical Methods for Research Workers , 1930, Nature.