Highly accurate, linear, and unconditionally energy stable large time-stepping schemes for the Functionalized Cahn-Hilliard gradient flow equation

[1]  Jie Shen,et al.  A New Class of Efficient and Robust Energy Stable Schemes for Gradient Flows , 2017, SIAM Rev..

[2]  Wenqiang Feng,et al.  A mass-conservative adaptive FAS multigrid solver for cell-centered finite difference methods on block-structured, locally-cartesian grids , 2018, J. Comput. Phys..

[3]  Xiaofeng Yang,et al.  Linear, first and second-order, unconditionally energy stable numerical schemes for the phase field model of homopolymer blends , 2016, J. Comput. Phys..

[4]  Keith Promislow,et al.  Curvature driven flow of bi-layer interfaces , 2011 .

[5]  Jun Zhang,et al.  Efficient second order unconditionally stable time marching numerical scheme for a modified phase-field crystal model with a strong nonlinear vacancy potential , 2019, Comput. Phys. Commun..

[6]  Jiang Yang,et al.  The scalar auxiliary variable (SAV) approach for gradient flows , 2018, J. Comput. Phys..

[7]  Frank S. Bates,et al.  Consequences of Nonergodicity in Aqueous Binary PEO-PB Micellar Dispersions , 2004 .

[8]  Jie Shen,et al.  Efficient energy stable schemes for isotropic and strongly anisotropic Cahn-Hilliard systems with the Willmore regularization , 2018, J. Comput. Phys..

[9]  Ying Chen,et al.  A Uniquely Solvable, Energy Stable Numerical Scheme for the Functionalized Cahn–Hilliard Equation and Its Convergence Analysis , 2018, J. Sci. Comput..

[10]  Jie Shen,et al.  Decoupled, Energy Stable Schemes for Phase-Field Models of Two-Phase Incompressible Flows , 2015, SIAM J. Numer. Anal..

[11]  Daozhi Han,et al.  Linearly first- and second-order, unconditionally energy stable schemes for the phase field crystal model , 2017, J. Comput. Phys..

[12]  Jie Shen,et al.  Highly Efficient and Accurate Numerical Schemes for the Epitaxial Thin Film Growth Models by Using the SAV Approach , 2019, J. Sci. Comput..

[13]  Steven M. Wise,et al.  An Energy Stable BDF2 Fourier Pseudo-Spectral Numerical Scheme for the Square Phase Field Crystal Equation , 2019, Communications in Computational Physics.

[14]  Yuan Ma,et al.  An adaptive time-stepping strategy for solving the phase field crystal model , 2013, J. Comput. Phys..

[15]  Keith Promislow,et al.  PEM Fuel Cells: A Mathematical Overview , 2009, SIAM J. Appl. Math..

[16]  Steven M. Wise,et al.  Solving the regularized, strongly anisotropic Cahn-Hilliard equation by an adaptive nonlinear multigrid method , 2007, J. Comput. Phys..

[17]  Victor M. Calo,et al.  An energy-stable convex splitting for the phase-field crystal equation , 2014, 1405.3488.

[18]  Jie Shen,et al.  Efficient spectral-Galerkin methods for systems of coupled second-order equations and their applications , 2012, J. Comput. Phys..

[19]  D. J. Eyre Unconditionally Gradient Stable Time Marching the Cahn-Hilliard Equation , 1998 .

[20]  Steven M. Wise,et al.  Numerical comparison of modified-energy stable SAV-type schemes and classical BDF methods on benchmark problems for the functionalized Cahn-Hilliard equation , 2020, J. Comput. Phys..

[21]  Tao Tang,et al.  Stability Analysis of Large Time-Stepping Methods for Epitaxial Growth Models , 2006, SIAM J. Numer. Anal..

[22]  Jie Ouyang,et al.  Unconditionally energy stable second-order numerical schemes for the Functionalized Cahn-Hilliard gradient flow equation based on the SAV approach , 2021, Comput. Math. Appl..

[23]  Hui Zhang,et al.  Efficient and linear schemes for anisotropic Cahn-Hilliard model using the Stabilized-Invariant Energy Quadratization (S-IEQ) approach , 2019, Comput. Phys. Commun..

[24]  Jun Zhang,et al.  Error analysis of full-discrete invariant energy quadratization schemes for the Cahn-Hilliard type equation , 2020, J. Comput. Appl. Math..

[25]  Hui Zhang,et al.  A positivity-preserving, energy stable and convergent numerical scheme for the Cahn–Hilliard equation with a Flory–Huggins–Degennes energy , 2019, Communications in Mathematical Sciences.

[26]  Yan Xu,et al.  Local Discontinuous Galerkin Methods for the Functionalized Cahn–Hilliard Equation , 2015, J. Sci. Comput..

[27]  Qing Cheng,et al.  Multiple Scalar Auxiliary Variable (MSAV) Approach and its Application to the Phase-Field Vesicle Membrane Model , 2018, SIAM J. Sci. Comput..

[28]  Jaylan Stuart Jones,et al.  Development of a fast and accurate time stepping scheme for the functionalized Cahn-Hilliard equation and application to a graphics processing unit , 2013 .

[29]  Xiaofeng Yang,et al.  Decoupled energy stable schemes for phase-field vesicle membrane model , 2015, J. Comput. Phys..

[30]  Keith Promislow,et al.  High accuracy solutions to energy gradient flows from material science models , 2014, J. Comput. Phys..

[31]  Cheng Wang,et al.  A Second-Order Energy Stable BDF Numerical Scheme for the Cahn-Hilliard Equation , 2018 .

[32]  Katarzyna P. Adamala,et al.  Photochemically driven redox chemistry induces protocell membrane pearling and division , 2012, Proceedings of the National Academy of Sciences.

[33]  Jia Zhao,et al.  Numerical approximations for the molecular beam epitaxial growth model based on the invariant energy quadratization method , 2017, J. Comput. Phys..

[34]  Schick,et al.  Correlation between structural and interfacial properties of amphiphilic systems. , 1990, Physical review letters.

[35]  Keith Promislow,et al.  Meander and Pearling of Single-Curvature Bilayer Interfaces in the Functionalized Cahn-Hilliard Equation , 2014, SIAM J. Math. Anal..

[36]  K. Promislow,et al.  An Overview of Network Bifurcations in the Functionalized Cahn-Hilliard Free Energy , 2015 .

[37]  Matthew F. Causley,et al.  Method of Lines Transpose: Energy Gradient Flows Using Direct Operator Inversion for Phase-Field Models , 2016, SIAM J. Sci. Comput..

[38]  Zhonghua Qiao,et al.  An Adaptive Time-Stepping Strategy for the Cahn-Hilliard Equation , 2012 .

[39]  Frank S Bates,et al.  On the Origins of Morphological Complexity in Block Copolymer Surfactants , 2003, Science.

[40]  Tao Tang,et al.  An Adaptive Time-Stepping Strategy for the Molecular Beam Epitaxy Models , 2011, SIAM J. Sci. Comput..

[41]  Xiaofeng Yang,et al.  Numerical Approximations for the Cahn–Hilliard Phase Field Model of the Binary Fluid-Surfactant System , 2017, Journal of Scientific Computing.

[42]  Cheng Wang,et al.  Preconditioned steepest descent methods for some nonlinear elliptic equations involving p-Laplacian terms , 2016, J. Comput. Phys..

[43]  Axel Voigt,et al.  A new phase-field model for strongly anisotropic systems , 2009, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[44]  Xiaofeng Yang,et al.  Convergence Analysis for the Invariant Energy Quadratization (IEQ) Schemes for Solving the Cahn–Hilliard and Allen–Cahn Equations with General Nonlinear Potential , 2020, J. Sci. Comput..

[45]  Xiaofeng Yang,et al.  Numerical approximations of Allen-Cahn and Cahn-Hilliard equations , 2010 .