A Nanobody‐Conjugated DNA Nanoplatform for Targeted Platinum‐Drug Delivery

[1]  Chengcheng Zhu,et al.  Restraining Cancer Cells by Dual Metabolic Inhibition with a Mitochondrion-Targeted Platinum(II) Complex. , 2019, Angewandte Chemie.

[2]  G. Liang,et al.  Facile syntheses of conjugated polymers for photothermal tumour therapy , 2019, Nature Communications.

[3]  Chengcheng Zhu,et al.  Restraining Cancer Cells by Dual Metabolic Inhibition with a Mitochondrion‐Targeted Platinum(II) Complex , 2019, Angewandte Chemie.

[4]  Zijian Guo,et al.  Stimuli-Responsive Therapeutic Metallodrugs. , 2018, Chemical reviews.

[5]  Baoquan Ding,et al.  A Tailored DNA Nanoplatform for Synergistic RNAi-/Chemotherapy of Multidrug-Resistant Tumors. , 2018, Angewandte Chemie.

[6]  Baoquan Ding,et al.  A Tailored DNA Nanoplatform for Synergistic RNAi-/Chemotherapy of Multidrug-Resistant Tumors. , 2018, Angewandte Chemie.

[7]  Jin-Zhi Du,et al.  Tumor-Acidity-Cleavable Maleic Acid Amide (TACMAA): A Powerful Tool for Designing Smart Nanoparticles To Overcome Delivery Barriers in Cancer Nanomedicine. , 2018, Accounts of chemical research.

[8]  Baoquan Ding,et al.  Self-Assembled Double-Bundle DNA Tetrahedron for Efficient Antisense Delivery. , 2018, ACS applied materials & interfaces.

[9]  M. Y. Thanuja,et al.  Bioengineered cellular and cell membrane‐derived vehicles for actively targeted drug delivery: So near and yet so far , 2018, Advanced drug delivery reviews.

[10]  Rong Ma,et al.  Monochalcoplatin: An Actively Transported, Quickly Reducible, and Highly Potent PtIV Anticancer Prodrug. , 2018, Angewandte Chemie.

[11]  Rong Ma,et al.  Monochalcoplatin: An Actively Transported, Quickly Reducible, and Highly Potent PtIV Anticancer Prodrug. , 2018, Angewandte Chemie.

[12]  D. Yoon,et al.  Streptavidin‐mirror DNA tetrahedron hybrid as a platform for intracellular and tumor delivery of enzymes , 2018, Journal of Controlled Release.

[13]  Baoquan Ding,et al.  A DNA-Based Nanocarrier for Efficient Gene Delivery and Combined Cancer Therapy. , 2018, Nano letters.

[14]  Ulrike Endesfelder,et al.  A peptide tag-specific nanobody enables high-quality labeling for dSTORM imaging , 2018, Nature Communications.

[15]  Baoquan Ding,et al.  A DNA nanorobot functions as a cancer therapeutic in response to a molecular trigger in vivo , 2018, Nature Biotechnology.

[16]  Christian P. R. Hackenberger,et al.  Nanobodys: Strategien zur chemischen Funktionalisierung und intrazelluläre Anwendungen , 2018 .

[17]  Conor McMahon,et al.  Yeast surface display platform for rapid discovery of conformationally selective nanobodies , 2018, Nature Structural & Molecular Biology.

[18]  Meg Duroux,et al.  On the use of liposome controls in studies investigating the clinical potential of extracellular vesicle-based drug delivery systems - A commentary. , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[19]  Philip S Low,et al.  Ligand-Targeted Drug Delivery. , 2017, Chemical reviews.

[20]  M. Edirisinghe,et al.  Drug Delivery Strategies for Platinum-Based Chemotherapy. , 2017, ACS nano.

[21]  Yamuna Krishnan,et al.  Cell-targetable DNA nanocapsules for spatiotemporal release of caged bioactive small molecules. , 2017, Nature nanotechnology.

[22]  Hwangseo Park,et al.  Discovery of EGF Receptor Inhibitors That Are Selective for the d746-750/T790M/C797S Mutant through Structure-Based de Novo Design. , 2017, Angewandte Chemie.

[23]  Hwangseo Park,et al.  Discovery of EGFR(d746-750/T790M/C797S) Mutant-Selective Inhibitors via Structure-Based de Novo Design , 2017 .

[24]  K. B. Garbutcheon-Singh,et al.  Platinum Intercalators of DNA as Anticancer Agents , 2017 .

[25]  Yves Pommier,et al.  A subset of platinum-containing chemotherapeutic agents kills cells by inducing ribosome biogenesis stress , 2017, Nature Medicine.

[26]  Lori A. Coburn,et al.  EGFR-mediated Macrophage Activation Promotes Colitis-associated Tumorigenesis , 2017, Oncogene.

[27]  Anselm F. L. Schneider,et al.  Nanobodies: Chemical Functionalization Strategies and Intracellular Applications , 2018, Angewandte Chemie.

[28]  J. Kjems,et al.  Intracellular Delivery of a Planar DNA Origami Structure by the Transferrin-Receptor Internalization Pathway. , 2016, Small.

[29]  S. Lippard,et al.  The Next Generation of Platinum Drugs: Targeted Pt(II) Agents, Nanoparticle Delivery, and Pt(IV) Prodrugs. , 2016, Chemical reviews.

[30]  R. Scharpf,et al.  The Genomic Landscape of Response to EGFR Blockade in Colorectal Cancer , 2015, Nature.

[31]  C. Mao,et al.  Self-assembly of molecule-like nanoparticle clusters directed by DNA nanocages. , 2015, Journal of the American Chemical Society.

[32]  Hao Yan,et al.  Structural DNA Nanotechnology: State of the Art and Future Perspective , 2014, Journal of the American Chemical Society.

[33]  S. Lippard,et al.  Pt(IV) Prodrugs Designed to Bind Non-Covalently to Human Serum Albumin for Drug Delivery , 2014, Journal of the American Chemical Society.

[34]  Ronghua Yang,et al.  Functional DNA-Containing Nanomaterials: Cellular Applications in Biosensing, Imaging, and Targeted Therapy , 2014, Accounts of chemical research.

[35]  Chunhai Fan,et al.  Functional DNA nanostructures for theranostic applications. , 2014, Accounts of chemical research.

[36]  R. Roovers,et al.  Structural evaluation of EGFR inhibition mechanisms for nanobodies/VHH domains. , 2013, Structure.

[37]  Björn Högberg,et al.  DNA origami delivery system for cancer therapy with tunable release properties. , 2012, ACS nano.

[38]  Hao Yan,et al.  DNA origami as a carrier for circumvention of drug resistance. , 2012, Journal of the American Chemical Society.

[39]  Robert E. Johnson,et al.  Structural basis for cisplatin DNA damage tolerance by human polymerase η during cancer chemotherapy , 2012, Nature Structural &Molecular Biology.

[40]  I. Willner,et al.  Functionalized DNA nanostructures. , 2012, Chemical reviews.

[41]  Sandhya P Koushika,et al.  A synthetic icosahedral DNA-based host-cargo complex for functional in vivo imaging. , 2011, Nature communications.

[42]  Omid C Farokhzad,et al.  Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo , 2011, Proceedings of the National Academy of Sciences.

[43]  K. B. Garbutcheon-Singh,et al.  Advances in platinum chemotherapeutics. , 2010, Chemistry.

[44]  V. Brabec,et al.  Studies of the mechanism of action of platinum(II) complexes with potent cytotoxicity in human cancer cells. , 2009, Journal of medicinal chemistry.

[45]  C. Mao,et al.  Hierarchical self-assembly of DNA into symmetric supramolecular polyhedra , 2008, Nature.

[46]  F. Couch,et al.  Secondary mutations as a mechanism of cisplatin resistance in BRCA2-mutated cancers , 2008, Nature.

[47]  S. Lippard,et al.  Structure, Recognition, and Processing of Cisplatin-DNA Adducts. , 1999, Chemical reviews.

[48]  S. Lippard,et al.  Metallointercalation reagents. 2-hydroxyethanethiolato(2,2',2'-terpyridine)-platinum(II) monocation binds strongly to DNA by intercalation. , 1974, Proceedings of the National Academy of Sciences of the United States of America.