Bandgap optimization of sol–gel-derived TiO2 and its effect on the photodegradation of formic acid

This work reports a key factor, the H2SO4 concentration, in controlling the physicochemical properties of titanium dioxide (TiO2) photocatalysts during the sol–gel synthesis. The photocatalysts synthesized using different concentrations of H2SO4 possess specific anatase/rutile ratios and crystallite sizes as well as surface areas, resulting in different photocatalytic performance in the degradation of formic acid in solution. The best photocatalytic performance is observed for the TiO2 photocatalyst containing a relatively high percentage of the rutile phase (∼84%), which is obtained from the sol–gel synthesis without H2SO4.

[1]  Chunxia Wang,et al.  Crystalline phase regulation of anatase–rutile TiO2 for the enhancement of photocatalytic activity , 2020, RSC advances.

[2]  Mohammad Hossein Davood Abadi Farahani,et al.  A review on the synthesis of the various types of anatase TiO2 facets and their applications for photocatalysis , 2020 .

[3]  A. Kherbeche,et al.  Corrigendum to ‘Preparation of ZnFe2O4/ZnO composite: Effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination’ [J. Photochem. Photobiol. A: Chem. 390 (2020) 112305] , 2020 .

[4]  A. Kherbeche,et al.  Preparation of ZnFe2O4/ZnO composite: Effect of operational parameters for photocatalytic degradation of dyes under UV and visible illumination , 2020 .

[5]  Xinjiang Hu,et al.  Mechanisms underlying the photocatalytic degradation pathway of ciprofloxacin with heterogeneous TiO2 , 2020 .

[6]  A. Kherbeche,et al.  Extraordinary visible photocatalytic activity of a Co0.2Zn0.8O system studied in the Remazol BB oxidation , 2019, Journal of Photochemistry and Photobiology A: Chemistry.

[7]  Yang Bai,et al.  Facile Formation of Anatase/Rutile TiO2 Nanocomposites with Enhanced Photocatalytic Activity , 2019, Molecules.

[8]  A. A.,et al.  Tuning the optical band Gap of pure TiO2 via photon induced method , 2019, Optik.

[9]  D. Fulvio,et al.  Intensification of photocatalytic degradation of organic dyes and phenol by scale-up and numbering-up of meso- and microfluidic TiO2 reactors for wastewater treatment , 2018, Journal of Photochemistry and Photobiology A: Chemistry.

[10]  Trung-Anh Le,et al.  The Combination of Hydrogen and Methanol Production through Artificial Photosynthesis-Are We Ready Yet? , 2018, ChemSusChem.

[11]  Dunia E. Santiago,et al.  TiO2-based (Fe3O4, SiO2, reduced graphene oxide) magnetically recoverable photocatalysts for imazalil degradation in a synthetic wastewater , 2018, Environmental Science and Pollution Research.

[12]  V. Sangal,et al.  Synthesis, characterization and anticancer activities of metal ions Fe and Cu doped and co-doped TiO2 , 2017 .

[13]  R. Williamson,et al.  Tuning anatase and rutile phase ratios and nanoscale surface features by anodization processing onto titanium substrate surfaces. , 2016, Materials science & engineering. C, Materials for biological applications.

[14]  Jinlong Zhang,et al.  Facile phase control for hydrothermal synthesis of anatase-rutile TiO2 with enhanced photocatalytic activity , 2015 .

[15]  A. Nakaruk,et al.  Enhanced photocatalytic performance of TiO2 particles via effect of anatase–rutile ratio , 2015 .

[16]  S. Suib,et al.  Crystalline Mixed Phase (Anatase/Rutile) Mesoporous Titanium Dioxides for Visible Light Photocatalytic Activity , 2015 .

[17]  J. Coon,et al.  Formic-acid-induced depolymerization of oxidized lignin to aromatics , 2014, Nature.

[18]  S. Phanichphant,et al.  Photocatalytic activities of Fe–Cu/TiO2 on the mineralization of oxalic acid and formic acid under visible light irradiation , 2014 .

[19]  F. Giustino,et al.  TiO2 anatase with a bandgap in the visible region. , 2014, Nano letters.

[20]  Jiaguo Yu,et al.  New understanding of the difference of photocatalytic activity among anatase, rutile and brookite TiO2. , 2014, Physical chemistry chemical physics : PCCP.

[21]  Wei-szu Liu,et al.  The roles of surface-doped metal ions (V, Mn, Fe, Cu, Ce, and W) in the interfacial behavior of TiO2 photocatalysts , 2014 .

[22]  Dunia E. Santiago,et al.  Effect of inorganic ions on the photocatalytic treatment of agro-industrial wastewaters containing imazalil , 2014 .

[23]  W. Li,et al.  Hierarchically porous titania networks with tunable anatase:rutile ratios and their enhanced photocatalytic activities. , 2014, ACS applied materials & interfaces.

[24]  A. Walsh,et al.  Band alignment of rutile and anatase TiO₂. , 2013, Nature materials.

[25]  H. Seo,et al.  Significant Enhancement in Visible Light Absorption of TiO2 Nanotube Arrays by Surface Band Gap Tuning , 2013 .

[26]  Dunia E. Santiago,et al.  Optimization of the degradation of imazalil by photocatalysis: Comparison between commercial and lab-made photocatalysts , 2013 .

[27]  Patrick Drogui,et al.  Modified TiO2 For Environmental Photocatalytic Applications: A Review , 2013 .

[28]  Ahmad Monshi,et al.  Modified Scherrer Equation to Estimate More Accurately Nano-Crystallite Size Using XRD , 2012 .

[29]  A. Fujishima,et al.  TiO2 photocatalysis: Design and applications , 2012 .

[30]  M. Tripathi,et al.  A review on the synthesis of TiO2 nanoparticles by solution route , 2012 .

[31]  Xingfu Zhou,et al.  Synergistic manipulation of micro-nanostructures and composition: anatase/rutile mixed-phase TiO2 hollow micro-nanospheres with hierarchical mesopores for photovoltaic and photocatalytic applications , 2011, Nanotechnology.

[32]  H. Eskandarloo,et al.  Investigation of the effect of sol–gel synthesis variables on structural and photocatalytic properties of TiO2 nanoparticles , 2011 .

[33]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[34]  A. Amani‐Ghadim,et al.  Influence of solvent type on the characteristics and photocatalytic activity of TiO 2 nanoparticles prepared by the sol-gel method , 2011 .

[35]  R. López,et al.  Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: a comparative study , 2011, Journal of Sol-Gel Science and Technology.

[36]  Jinzhu Chen,et al.  Preparation and Photocatalytic Performance of Anatase/Rutile Mixed-Phase TiO2 Nanotubes , 2010 .

[37]  C. Saint,et al.  Recent developments in photocatalytic water treatment technology: a review. , 2010, Water research.

[38]  M. Fernández-García,et al.  Influence of sulfur on the structural, surface properties and photocatalytic activity of sulfated TiO2 , 2009 .

[39]  S. Wongnawa,et al.  Mixed amorphous and nanocrystalline TiO2 powders prepared by sol–gel method: Characterization and photocatalytic study , 2008 .

[40]  Abdul Halim Abdullah,et al.  Heterogeneous photocatalytic degradation of organic contaminants over titanium dioxide : A review of fundamentals, progress and problems , 2008 .

[41]  Saravanamuthu Vigneswaran,et al.  A review on UV/TiO2 photocatalytic oxidation process (Journal Review) , 2008 .

[42]  A. Stasinakis,et al.  USE OF SELECTED ADVANCED OXIDATION PROCESSES (AOPs) FOR WASTEWATER TREATMENT - A MINI REVIEW , 2008 .

[43]  S. Azhar,et al.  FORMIC ACID PULPING OF RICE STRAW , 2007 .

[44]  Lutz Mädler,et al.  Flame sprayed visible light-active Fe-TiO2 for photomineralisation of oxalic acid , 2007 .

[45]  P. K. Surolia,et al.  Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2 , 2007 .

[46]  U. Westermark,et al.  Determination of formic-acid and acetic acid concentrations formed during hydrothermal treatment of birch wood and its relation to colour, strength and hardness , 2006, Wood Science and Technology.

[47]  G. Colón,et al.  Structural and surface approach to the enhanced photocatalytic activity of sulfated TiO2 photocatalyst , 2006 .

[48]  A. Vogelpohl,et al.  A fine route to tune the photocatalytic activity of TiO2 , 2006 .

[49]  Xianwei Li,et al.  SOL–GEL SYNTHESIS OF TIO2 NANOPARTICLES AND PHOTOCATALYTIC DEGRADATION OF METHYL ORANGE IN AQUEOUS TIO2 SUSPENSIONS , 2006 .

[50]  William W. Yu,et al.  Photodegradation of Congo Red catalyzed by nanosized TiO2 , 2005 .

[51]  Hsuan-Liang Liu,et al.  Optimal decolorization efficiency of Reactive Red 239 by UV/TiO2 photocatalytic process coupled with response surface methodology , 2005 .

[52]  M. Sayagués,et al.  Photoactivity of anatase–rutile TiO2 nanocrystalline mixtures obtained by heat treatment of homogeneously precipitated anatase , 2005 .

[53]  G. Colón,et al.  Photocatalytic behaviour of sulphated TiO2 for phenol degradation , 2003 .

[54]  L. Miao,et al.  Preparation and characterization of polycrystalline anatase and rutile TiO2 thin films by rf magnetron sputtering , 2003 .

[55]  X. Bokhimi,et al.  Effect of sulfation on the photoactivity of TiO2 sol–gel derived catalysts , 2003 .

[56]  S. Manorama,et al.  Bandgap studies on anatase titanium dioxide nanoparticles , 2003 .

[57]  Longtu Li,et al.  Preparation and Characterization of Nano-TiO2 Powder , 2002 .

[58]  G. Colón,et al.  Modification of the physicochemical properties of commercial TiO2 samples by soft mechanical activation , 2002 .

[59]  P. Boule,et al.  Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions , 2001 .

[60]  J. Araña,et al.  Photocatalytic degradation of formic acid using Fe/TiO2 catalysts: the role of Fe3+/Fe2+ ions in the degradation mechanism , 2001 .

[61]  Y. Bigot,et al.  Formic acid pulping of rice straw , 2001 .

[62]  K. Rajeshwar,et al.  Titania-based heterogeneous photocatalysis. Materials, mechanistic issues, and implications for environmental remediation , 2001 .

[63]  G. Rohrer,et al.  Orientation Dependence of Photochemical Reactions on TiO2 Surfaces , 1998 .

[64]  B. Ohtani,et al.  Photocatalytic Activity of Amorphous−Anatase Mixture of Titanium(IV) Oxide Particles Suspended in Aqueous Solutions , 1997 .

[65]  M. Hirano,et al.  Preparation of TiO_2-based powders with high photocatalytic activities , 1997 .

[66]  Keiichi Tanaka,et al.  Effect of crystallinity of TiO2 on its photocatalytic action , 1991 .