Noise-based ballistic wave passive seismic monitoring. Part 1: body waves

F. Brenguier ,1 R. Courbis,1,4 A. Mordret ,2 X. Campman,3 P. Boué,1 M. Chmiel,1,4 T. Takano,1,5 T. Lecocq,6 W. Van der Veen,7 S. Postif3 and D. Hollis4 1Univ. Grenoble Alpes, Institut des Sciences de la Terre, Grenoble, France. E-mail: florent.brenguier@univ-grenoble-alpes.fr 2Massachusetts Institute of Technology, Department of Earth, Atmospheric, and Planetary Sciences, Cambridge, US 3Shell, Amsterdam, The Netherlands 4Sisprobe, Grenoble, France 5Tohoku University, Solid Earth Physics Laboratory, Sendai, Japan 6Royal Observatory of Belgium, Brussels, Belgium 7Nederlandse Aardolie Maatschappij, Assen, The Netherlands

[1]  X. Campman,et al.  Noise-based ballistic wave passive seismic monitoring – Part 2: surface waves , 2020 .

[2]  Y. Ben‐Zion,et al.  Train Traffic as a Powerful Noise Source for Monitoring Active Faults With Seismic Interferometry , 2019, Geophysical research letters.

[3]  R. Hilst,et al.  High Temporal Resolution Monitoring of Small Variations in Crustal Strain by Dense Seismic Arrays , 2019, Geophysical Research Letters.

[4]  M. Shirzaei,et al.  Episodic creep events on the San Andreas Fault caused by pore-pressure variations , 2018, Nature Geoscience.

[5]  S. Bourne,et al.  The exponential rise of induced seismicity with increasing stress levels in the Groningen gas field and its implications for controlling seismic risk , 2018 .

[6]  L. Longuevergne,et al.  Monitoring ground water storage at mesoscale using seismic noise: 30 years of continuous observation and thermo-elastic and hydrological modeling , 2017, Scientific Reports.

[7]  T. Takeda,et al.  Seasonal Crustal Seismic Velocity Changes Throughout Japan , 2017 .

[8]  R. Bürgmann,et al.  Seasonal water storage, stress modulation, and California seismicity , 2017, Science.

[9]  J. Bommer,et al.  An integrated shear-wave velocity model for the Groningen gas field, The Netherlands , 2017, Bulletin of Earthquake Engineering.

[10]  R. White,et al.  Relative seismic velocity variations correlate with deformation at Kīlauea volcano , 2016, Science Advances.

[11]  M. Campillo,et al.  Using slowness and azimuth fluctuations as new observables for four‐dimensional reservoir seismic monitoring , 2016 .

[12]  N. Nakata,et al.  Body and surface wave reconstruction from seismic noise correlations between arrays at Piton de la Fournaise volcano , 2016 .

[13]  N. Nakata,et al.  Toward 4D Noise-Based Seismic Probing of Volcanoes: Perspectives from a Large-N Experiment on Piton de la Fournaise Volcano , 2016 .

[14]  P. Segall,et al.  Injection‐induced seismicity on basement faults including poroelastic stressing , 2015 .

[15]  D. Rivet,et al.  Improved detection of preeruptive seismic velocity drops at the Piton de La Fournaise volcano , 2015 .

[16]  Jesse F. Lawrence,et al.  Body wave extraction and tomography at Long Beach, California, with ambient‐noise interferometry , 2015 .

[17]  P. Roux,et al.  On the temporal stability of the coda of ambient noise correlations , 2014 .

[18]  T. Nishimura,et al.  Seismic velocity changes caused by the Earth tide: Ambient noise correlation analyses of small‐array data , 2014 .

[19]  Nikolai M. Shapiro,et al.  Seismic noise‐based time‐lapse monitoring of the Valhall overburden , 2014 .

[20]  F. Brenguier,et al.  Mapping pressurized volcanic fluids from induced crustal seismic velocity drops , 2014, Science.

[21]  Philippe Roux,et al.  Teleseismic correlations of ambient seismic noise for deep global imaging of the Earth , 2013 .

[22]  W. Ellsworth Injection-Induced Earthquakes , 2013, Science.

[23]  P. Roux,et al.  Double beamforming processing in a seismic prospecting context , 2013 .

[24]  M. Campillo,et al.  Body-Wave Imaging of Earth’s Mantle Discontinuities from Ambient Seismic Noise , 2012, Science.

[25]  Florent Brenguier,et al.  Assessment of resolution and accuracy of the Moving Window Cross Spectral technique for monitoring crustal temporal variations using ambient seismic noise , 2011 .

[26]  Mustafa Aktar,et al.  Extended Nucleation of the 1999 Mw 7.6 Izmit Earthquake , 2011, Science.

[27]  Michel Campillo,et al.  Estimation of the effect of nonisotropically distributed energy on the apparent arrival time in correlations , 2009 .

[28]  R. Weaver,et al.  On the correlation of non-isotropically distributed ballistic scalar diffuse waves. , 2009, The Journal of the Acoustical Society of America.

[29]  Kees Wapenaar,et al.  Reflection images from ambient seismic noise , 2009 .

[30]  F. Brenguier,et al.  Postseismic Relaxation Along the San Andreas Fault at Parkfield from Continuous Seismological Observations , 2008, Science.

[31]  Thomas M. Daley,et al.  Preseismic velocity changes observed from active source monitoring at the Parkfield SAFOD drill site , 2008, Nature.

[32]  P. Talwani,et al.  Seismogenic permeability, ks , 2007 .

[33]  Michel Campillo,et al.  Towards forecasting volcanic eruptions using seismic noise , 2007, 0706.1935.

[34]  T. Daley,et al.  Active source monitoring of crosswell seismic travel time forstress induced changes , 2006 .

[35]  Christoph Sens-Schönfelder,et al.  Passive image interferometry and seasonal variations of seismic velocities at Merapi Volcano, Indonesia , 2006 .

[36]  Peter Gerstoft,et al.  P‐waves from cross‐correlation of seismic noise , 2005 .

[37]  H. Utada,et al.  Long‐term observation of in situ seismic velocity and attenuation , 2003 .

[38]  William L. Ellsworth,et al.  Monitoring velocity variations in the crust using earthquake doublets: An application to the Calaveras Fault, California , 1984 .