The Role of MicroRNAs in Human Diseases

MicroRNAs (miRNAs) are short RNA molecules which bind to target mRNAs, resulting in translational repression and gene silencing and are found in all eukaryotic cells. Approximately 2200 miRNA genes have been reported to exist in the mammalian genome, from which over 1000 belong to the human genome. Many major cellular functions such as development, differentiation, growth, and metabolism are known to be regulated by miRNAs. Proximity to other genes in the genome and their locations in introns of coding genes, noncoding genes and exons have been reported to have a major influence on the level of gene expressions in eukaryotic cells. miRNAs are well conserved in eukaryotic system and are believed to be an essential and evolutionary ancient component of gene regulatory networks. Therefore, in recent years miRNAs have been studied as a likely candidate for involvement in most biologic processes and have been implicated in many human diseases.

[1]  Pasko Rakic,et al.  Microarray analysis of microRNA expression in the developing mammalian brain , 2004, Genome Biology.

[2]  Elena Cattaneo,et al.  A microRNA-based gene dysregulation pathway in Huntington's disease , 2008, Neurobiology of Disease.

[3]  D. Bartel,et al.  MicroRNAs Modulate Hematopoietic Lineage Differentiation , 2004, Science.

[4]  Anton J. Enright,et al.  Requirement of bic/microRNA-155 for Normal Immune Function , 2007, Science.

[5]  A. Zeiher Endothelial vasodilator dysfunction: Pathogenetic link to myocardial ischaemia or epiphenomenon? , 1996, The Lancet.

[6]  D. Absher,et al.  FMRP associates with polyribosomes as an mRNP, and the I304N mutation of severe fragile X syndrome abolishes this association. , 1997, Molecular cell.

[7]  S. Eddy,et al.  Kissing complex RNAs mediate interaction between the Fragile-X mental retardation protein KH2 domain and brain polyribosomes. , 2005, Genes & development.

[8]  M. Leirisalo-Repo Early arthritis and infection , 2005, Current opinion in rheumatology.

[9]  A. Bird,et al.  MeCP2 Is a Transcriptional Repressor with Abundant Binding Sites in Genomic Chromatin , 1997, Cell.

[10]  E. Tjan Importance of microRNAs in skin morphogenesis and diseases , 2008 .

[11]  J. Mattick,et al.  Non-coding RNA. , 2006, Human molecular genetics.

[12]  Francois Natt,et al.  A novel microarray approach reveals new tissue-specific signatures of known and predicted mammalian microRNAs , 2007, Nucleic acids research.

[13]  Jian-Fu Chen,et al.  The role of microRNA-1 and microRNA-133 in skeletal muscle proliferation and differentiation , 2006, Nature Genetics.

[14]  S. Warren,et al.  FMR1 protein: conserved RNP family domains and selective RNA binding. , 1993, Science.

[15]  Fabio Martelli,et al.  MicroRNA-210 Modulates Endothelial Cell Response to Hypoxia and Inhibits the Receptor Tyrosine Kinase Ligand Ephrin-A3* , 2008, Journal of Biological Chemistry.

[16]  J. Mattick,et al.  Small regulatory RNAs in mammals. , 2005, Human molecular genetics.

[17]  C. Sen,et al.  MicroRNA in cutaneous wound healing: a new paradigm. , 2007, DNA and cell biology.

[18]  Eugene Berezikov,et al.  Camels and zebrafish, viruses and cancer: a microRNA update. , 2005, Human molecular genetics.

[19]  Hajime Sakai,et al.  Regulation of Flowering Time and Floral Organ Identity by a MicroRNA and Its APETALA2-Like Target Genes Article, publication date, and citation information can be found at www.plantcell.org/cgi/doi/10.1105/tpc.016238. , 2003, The Plant Cell Online.

[20]  C. Burge,et al.  Prediction of Mammalian MicroRNA Targets , 2003, Cell.

[21]  M. Egan,et al.  Schizophrenia, III: brain-derived neurotropic factor and genetic risk. , 2003, The American journal of psychiatry.

[22]  Alan Herbert,et al.  The four Rs of RNA-directed evolution , 2003, Nature Genetics.

[23]  Aadel A. Chaudhuri,et al.  Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder , 2008, The Journal of experimental medicine.

[24]  B. Bartel MicroRNAs directing siRNA biogenesis , 2005, Nature Structural &Molecular Biology.

[25]  R I Richards,et al.  Mapping of DNA instability at the fragile X to a trinucleotide repeat sequence p(CCG)n , 1991, Science.

[26]  Stefanie Dimmeler,et al.  Role of Dicer and Drosha for Endothelial MicroRNA Expression and Angiogenesis , 2007, Circulation research.

[27]  A. Krainer,et al.  Pre-mRNA splicing in the new millennium. , 2001, Current opinion in cell biology.

[28]  W. Lukiw,et al.  Micro-RNA speciation in fetal, adult and Alzheimer's disease hippocampus , 2007, Neuroreport.

[29]  J. Darnell,et al.  Fragile X Mental Retardation Protein Is Associated with Translating Polyribosomes in Neuronal Cells , 2004, The Journal of Neuroscience.

[30]  D. Mccormick Sequence the Human Genome , 1986, Bio/Technology.

[31]  B. Berkhout,et al.  RISCy Business: MicroRNAs, Pathogenesis, and Viruses* , 2007, Journal of Biological Chemistry.

[32]  J. Isner,et al.  Estrogen-Mediated, Endothelial Nitric Oxide Synthase–Dependent Mobilization of Bone Marrow–Derived Endothelial Progenitor Cells Contributes to Reendothelialization After Arterial Injury , 2003, Circulation.

[33]  P. Sarnow,et al.  Modulation of Hepatitis C Virus RNA Abundance by a Liver-Specific MicroRNA , 2005, Science.

[34]  P. Janson,et al.  MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis? , 2007, PloS one.

[35]  M. Wood,et al.  Short non-coding RNA biology and neurodegenerative disorders: novel disease targets and therapeutics. , 2009, Human molecular genetics.

[36]  V. Ambros,et al.  The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14 , 1993, Cell.

[37]  J. Mattick,et al.  Rapid evolution of noncoding RNAs: lack of conservation does not mean lack of function. , 2006, Trends in genetics : TIG.

[38]  A. Roses,et al.  Identification of miRNA Changes in Alzheimer's Disease Brain and CSF Yields Putative Biomarkers and Insights into Disease Pathways , 2008 .

[39]  A. Ardekani,et al.  Review Article Noncoding RNAs , 2009 .

[40]  L. Lim,et al.  A microRNA component of the p53 tumour suppressor network , 2007, Nature.

[41]  J. Mandel,et al.  Instability of a 550-base pair DNA segment and abnormal methylation in fragile X syndrome , 1991, Science.

[42]  Thomas Thum,et al.  MicroRNAs: novel regulators in cardiac development and disease. , 2008, Cardiovascular research.

[43]  Stijn van Dongen,et al.  miRBase: tools for microRNA genomics , 2007, Nucleic Acids Res..

[44]  A. Fatica,et al.  The interplay between the master transcription factor PU.1 and miR-424 regulates human monocyte/macrophage differentiation , 2007, Proceedings of the National Academy of Sciences.

[45]  N. Bonini,et al.  A New Role for MicroRNA Pathways: Modulation of Degeneration Induced by Pathogenic Human Disease Proteins , 2006, Cell cycle.

[46]  S. Warren,et al.  The fragile X mental retardation protein inhibits translation via interacting with mRNA. , 2001, Nucleic acids research.

[47]  Vetle I. Torvik,et al.  Mammalian microRNAs derived from genomic repeats. , 2005, Trends in genetics : TIG.

[48]  Elena Cattaneo,et al.  Normal huntingtin function: an alternative approach to Huntington's disease , 2005, Nature Reviews Neuroscience.

[49]  Rudolf Jaenisch,et al.  Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters , 2008, Cell.

[50]  E. Petricoin,et al.  Toxicoproteomics: Serum Proteomic Pattern Diagnostics for Early Detection of Drug Induced Cardiac Toxicities and Cardioprotection , 2004, Toxicologic pathology.

[51]  B. Lévy,et al.  Post-ischaemic neovascularization and inflammation. , 2008, Cardiovascular research.

[52]  S. Hersch,et al.  Fragile X Mental Retardation Protein: Nucleocytoplasmic Shuttling and Association with Somatodendritic Ribosomes , 1997, The Journal of Neuroscience.

[53]  I. Plante,et al.  MicroRNA-298 and MicroRNA-328 Regulate Expression of Mouse β-Amyloid Precursor Protein-converting Enzyme 1* , 2009, Journal of Biological Chemistry.

[54]  P. Sokoloff,et al.  BDNF controls dopamine D3 receptor expression and triggers behavioural sensitization , 2001, Nature.

[55]  A. Ostareck-Lederer,et al.  Evidence that fragile X mental retardation protein is a negative regulator of translation. , 2001, Human molecular genetics.

[56]  J. Isner,et al.  Role of endothelial nitric oxide synthase in endothelial cell migration. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[57]  Kaleb M. Pauley,et al.  Upregulated miR-146a expression in peripheral blood mononuclear cells from rheumatoid arthritis patients , 2008, Arthritis research & therapy.

[58]  R. Plasterk,et al.  RAKE and LNA-ISH reveal microRNA expression and localization in archival human brain. , 2005, RNA.

[59]  A. Delacourte,et al.  Loss of microRNA cluster miR-29a/b-1 in sporadic Alzheimer's disease correlates with increased BACE1/β-secretase expression , 2008, Proceedings of the National Academy of Sciences.

[60]  E. Petricoin,et al.  Proteomic Technologies to Study Diseases of the Lymphatic Vascular System , 2002, Annals of the New York Academy of Sciences.

[61]  Dong Kong,et al.  HBV-encoded microRNA candidate and its target , 2007, Comput. Biol. Chem..

[62]  M. Latronico,et al.  Physiological myocardial hypertrophy: how and why? , 2008, Frontiers in bioscience : a journal and virtual library.

[63]  O. Kirak,et al.  Regulation of progenitor cell proliferation and granulocyte function by microRNA-223 , 2008, Nature.

[64]  Laura Mariani,et al.  MicroRNAs modulate the angiogenic properties of HUVECs. , 2006, Blood.

[65]  Jordan S. Pober,et al.  Dicer Dependent MicroRNAs Regulate Gene Expression and Functions in Human Endothelial Cells , 2007, Circulation research.

[66]  Daniela C. Zarnescu,et al.  Biochemical and genetic interaction between the fragile X mental retardation protein and the microRNA pathway , 2004, Nature Neuroscience.

[67]  X. Chen MicroRNA signatures in liver diseases. , 2009, World journal of gastroenterology.

[68]  Helen V. Firth,et al.  Down syndrome (trisomy 21) , 2005 .

[69]  E. Petricoin,et al.  Serum proteomic patterns for detection of prostate cancer. , 2002, Journal of the National Cancer Institute.

[70]  C. Croce,et al.  MicroRNA-133 controls cardiac hypertrophy , 2007, Nature Medicine.

[71]  C. Mayr,et al.  miR-150, a microRNA expressed in mature B and T cells, blocks early B cell development when expressed prematurely , 2007, Proceedings of the National Academy of Sciences.

[72]  Edwin Cuppen,et al.  Diversity of microRNAs in human and chimpanzee brain , 2006, Nature Genetics.

[73]  Paul J. Harrison,et al.  For Personal Use. Only Reproduce with Permission from the Lancet Publishing Group. Genes for Schizophrenia? Recent Findings and Their Pathophysiological Implications , 2022 .

[74]  C. Croce,et al.  miRNAs, Cancer, and Stem Cell Division , 2005, Cell.

[75]  E. Petricoin,et al.  Use of proteomic patterns in serum to identify ovarian cancer , 2002, The Lancet.

[76]  E. Petricoin,et al.  Clinical potential of proteomics in the diagnosis of ovarian cancer , 2002, Expert review of molecular diagnostics.

[77]  H. Ruohola-Baker,et al.  Stem cell division is regulated by the microRNA pathway , 2005, Nature.

[78]  Muller Fabbri,et al.  A MicroRNA signature associated with prognosis and progression in chronic lymphocytic leukemia. , 2005, The New England journal of medicine.

[79]  Annick Harel-Bellan,et al.  The microRNA miR-181 targets the homeobox protein Hox-A11 during mammalian myoblast differentiation , 2006, Nature Cell Biology.

[80]  B. Reinhart,et al.  Conservation of the sequence and temporal expression of let-7 heterochronic regulatory RNA , 2000, Nature.

[81]  W. Lukiw,et al.  Induction of specific micro RNA (miRNA) species by ROS-generating metal sulfates in primary human brain cells. , 2007, Journal of inorganic biochemistry.

[82]  S. Head,et al.  Applying genomics to organ transplantation medicine in both discovery and validation of biomarkers. , 2007, International immunopharmacology.

[83]  Gail Mandel,et al.  Homeostatic regulation of MeCP2 expression by a CREB-induced microRNA , 2007, Nature Neuroscience.

[84]  Anton J. Enright,et al.  microRNA-155 regulates the generation of immunoglobulin class-switched plasma cells. , 2007, Immunity.

[85]  P. Avner,et al.  Employment opportunities for non‐coding RNAs , 2004, FEBS letters.

[86]  Peter T. Nelson,et al.  MicroRNAs (miRNAs) in Neurodegenerative Diseases , 2008, Brain pathology.

[87]  Thomas D. Schmittgen,et al.  Human chromosome 21-derived miRNAs are overexpressed in down syndrome brains and hearts. , 2008, Biochemical and biophysical research communications.

[88]  Jan Barciszewski,et al.  A new frontier for molecular medicine: noncoding RNAs. , 2005, Biochimica et biophysica acta.

[89]  P. Huang,et al.  Nitric oxide synthase modulates angiogenesis in response to tissue ischemia. , 1998, The Journal of clinical investigation.

[90]  U. Švajger,et al.  Platelet gel stimulates proliferation of human dermal fibroblasts in vitro. , 2007, Acta dermatovenerologica Alpina, Pannonica, et Adriatica.

[91]  M. Callan Epstein-Barr virus, arthritis, and the development of lymphoma in arthritis patients , 2004, Current opinion in rheumatology.

[92]  A. Caudy,et al.  Fragile X-related protein and VIG associate with the RNA interference machinery. , 2002, Genes & development.

[93]  Hanah Margalit,et al.  Clustering and conservation patterns of human microRNAs , 2005, Nucleic acids research.

[94]  E. Devor Primate microRNAs miR-220 and miR-492 lie within processed pseudogenes. , 2006, The Journal of heredity.

[95]  P G Nelson,et al.  Activity-dependent development of the vertebrate nervous system. , 1992, International review of neurobiology.

[96]  T. Tuschl,et al.  New microRNAs from mouse and human. , 2003, RNA.

[97]  C. Heeschen,et al.  Essential role of endothelial nitric oxide synthase for mobilization of stem and progenitor cells , 2003, Nature Medicine.

[98]  J. Sutcliffe,et al.  Identification of a gene (FMR-1) containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome , 1991, Cell.

[99]  Yong Dai,et al.  Comprehensive analysis of microRNA expression patterns in renal biopsies of lupus nephritis patients , 2009, Rheumatology International.

[100]  P. Jin,et al.  Small regulatory RNAs in neurodevelopmental disorders. , 2009, Human molecular genetics.

[101]  K. Williams,et al.  Atherosclerosis--an inflammatory disease. , 1999, The New England journal of medicine.

[102]  Danish Sayed,et al.  MicroRNAs in development and disease. , 2011, Physiological reviews.

[103]  T. Tuschl,et al.  Identification of Novel Genes Coding for Small Expressed RNAs , 2001, Science.

[104]  Bryan R. Cullen,et al.  A viral microRNA functions as an orthologue of cellular miR-155 , 2007, Nature.

[105]  D. Bartel MicroRNAs Genomics, Biogenesis, Mechanism, and Function , 2004, Cell.

[106]  Sek Won Kong,et al.  Altered microRNA expression in human heart disease. , 2007, Physiological genomics.

[107]  J. Zavadil,et al.  Transforming Growth Factor-β and microRNA:mRNA Regulatory Networks in Epithelial Plasticity , 2007, Cells Tissues Organs.

[108]  V. Ambros,et al.  Expression profiling of mammalian microRNAs uncovers a subset of brain-expressed microRNAs with possible roles in murine and human neuronal differentiation , 2004, Genome Biology.

[109]  Sanghyuk Lee,et al.  MicroRNA genes are transcribed by RNA polymerase II , 2004, The EMBO journal.

[110]  R. Goodman,et al.  Role reversal: the regulation of neuronal gene expression by microRNAs , 2005, Current Opinion in Neurobiology.

[111]  F. Dietrich,et al.  Morphogenesis in skin is governed by discrete sets of differentially expressed microRNAs , 2006, Nature Genetics.

[112]  Joshua T. Mendell,et al.  MicroRNA-126 regulates endothelial expression of vascular cell adhesion molecule 1 , 2008, Proceedings of the National Academy of Sciences.

[113]  K. Esser,et al.  MicroRNA-1 and microRNA-133a expression are decreased during skeletal muscle hypertrophy. , 2007, Journal of applied physiology.

[114]  Yong Zhao,et al.  Serum response factor regulates a muscle-specific microRNA that targets Hand2 during cardiogenesis , 2005, Nature.

[115]  George A. Calin,et al.  Mammalian microRNAs: a small world for fine-tuning gene expression , 2006, Mammalian Genome.

[116]  R. D. Rudic,et al.  Direct evidence for the importance of endothelium-derived nitric oxide in vascular remodeling. , 1998, The Journal of clinical investigation.

[117]  Z. Xu,et al.  Microarray analysis of microRNA expression in peripheral blood cells of systemic lupus erythematosus patients , 2007, Lupus.

[118]  H. Drexler,et al.  Statin-Induced Improvement of Endothelial Progenitor Cell Mobilization, Myocardial Neovascularization, Left Ventricular Function, and Survival After Experimental Myocardial Infarction Requires Endothelial Nitric Oxide Synthase , 2004, Circulation.

[119]  K. Kosik,et al.  Specific MicroRNAs Modulate Embryonic Stem Cell–Derived Neurogenesis , 2006, Stem cells.

[120]  Joel S Parker,et al.  microRNA expression in the prefrontal cortex of individuals with schizophrenia and schizoaffective disorder , 2007, Genome Biology.

[121]  D. Baltimore,et al.  NF-κB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses , 2006, Proceedings of the National Academy of Sciences.

[122]  D. Bartel,et al.  Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. , 2005, RNA.

[123]  Jian Gu,et al.  PI3K signaling and miRNA expression during the response of quiescent human fibroblasts to distinct proliferative stimuli , 2006, Genome Biology.

[124]  C. Sander,et al.  A Mammalian microRNA Expression Atlas Based on Small RNA Library Sequencing , 2007, Cell.

[125]  Diego G. Silva,et al.  Roquin represses autoimmunity by limiting inducible T-cell co-stimulator messenger RNA , 2007, Nature.

[126]  P. Alex,et al.  New serological biomarkers of inflammatory bowel disease. , 2008, World journal of gastroenterology.

[127]  H. Zoghbi,et al.  Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2 , 1999, Nature Genetics.

[128]  Hanah Margalit,et al.  Host Immune System Gene Targeting by a Viral miRNA , 2007, Science.

[129]  Isaac S. Kohane,et al.  Distinctive patterns of microRNA expression in primary muscular disorders , 2007, Proceedings of the National Academy of Sciences.

[130]  P. Sokoloff,et al.  Brain-derived neurotrophic factor controls dopamine D3 receptor expression: Implications for neurodevelopmental psychiatric disorders , 2009, Neurotoxicity Research.

[131]  Praveen Sethupathy,et al.  Human microRNA-155 on chromosome 21 differentially interacts with its polymorphic target in the AGTR1 3' untranslated region: a mechanism for functional single-nucleotide polymorphisms related to phenotypes. , 2007, American journal of human genetics.

[132]  J. Darnell,et al.  Fragile X Mental Retardation Protein Targets G Quartet mRNAs Important for Neuronal Function , 2001, Cell.

[133]  Muller Fabbri,et al.  Modulation of miR-155 and miR-125b Levels following Lipopolysaccharide/TNF-α Stimulation and Their Possible Roles in Regulating the Response to Endotoxin Shock1 , 2007, The Journal of Immunology.

[134]  A. Delacourte,et al.  MicroRNA regulation of Alzheimer's Amyloid precursor protein expression , 2009, Neurobiology of Disease.

[135]  J. Keller,et al.  RNA in Brain Disease: No Longer Just "The Messenger in the Middle" , 2007, Journal of neuropathology and experimental neurology.

[136]  Chaoqian Xu,et al.  The muscle-specific microRNA miR-1 regulates cardiac arrhythmogenic potential by targeting GJA1 and KCNJ2 , 2011, Nature Medicine.

[137]  Quaid Morris,et al.  Probing microRNAs with microarrays: tissue specificity and functional inference. , 2004, RNA.

[138]  Lena Smirnova,et al.  Regulation of miRNA expression during neural cell specification , 2005, The European journal of neuroscience.

[139]  J. Friedman,et al.  A role for microRNA in cystic liver and kidney diseases. , 2008, The Journal of clinical investigation.

[140]  Xiaoxia Qi,et al.  Control of Stress-Dependent Cardiac Growth and Gene Expression by a MicroRNA , 2007, Science.

[141]  Anton J. Enright,et al.  Materials and Methods Figs. S1 to S4 Tables S1 to S5 References and Notes Micrornas Regulate Brain Morphogenesis in Zebrafish , 2022 .

[142]  Stefanie Dimmeler,et al.  Role of microRNAs in vascular diseases, inflammation, and angiogenesis. , 2008, Cardiovascular research.

[143]  James G. Krueger,et al.  Pathogenesis and therapy of psoriasis , 2007, Nature.

[144]  H. Soifer,et al.  MicroRNAs in disease and potential therapeutic applications. , 2007, Molecular therapy : the journal of the American Society of Gene Therapy.

[145]  M. Siomi,et al.  A Drosophila fragile X protein interacts with components of RNAi and ribosomal proteins. , 2002, Genes & development.

[146]  David I. K. Martin,et al.  Retrotransposons as epigenetic mediators of phenotypic variation in mammals , 2001, Nature Genetics.

[147]  G. Strassmann,et al.  Mutational analysis of TNF-alpha gene reveals a regulatory role for the 3'-untranslated region in the genetic predisposition to lupus-like autoimmune disease. , 1996, Journal of immunology.

[148]  Qizhi Yao,et al.  MicroRNAs: Control and Loss of Control in Human Physiology and Disease , 2009, World Journal of Surgery.

[149]  D. Perkins,et al.  Expanding the ‘central dogma’: the regulatory role of nonprotein coding genes and implications for the genetic liability to schizophrenia , 2005, Molecular Psychiatry.

[150]  L. Kunkel,et al.  miRNAS in normal and diseased skeletal muscle , 2008, Journal of cellular and molecular medicine.

[151]  Mark D. Berry,et al.  Schizophrenia, a neurodegenerative disorder with neurodevelopmental antecedents , 2001, Progress in Neuro-Psychopharmacology and Biological Psychiatry.

[152]  Michael T. McManus,et al.  Dysregulation of Cardiogenesis, Cardiac Conduction, and Cell Cycle in Mice Lacking miRNA-1-2 , 2007, Cell.

[153]  International Human Genome Sequencing Consortium Initial sequencing and analysis of the human genome , 2001, Nature.

[154]  Kenneth S. Kosik,et al.  The Elegance of the MicroRNAs: A Neuronal Perspective , 2005, Neuron.

[155]  A. Evsikov,et al.  Retrotransposons regulate host genes in mouse oocytes and preimplantation embryos. , 2004, Developmental cell.

[156]  C. Ehresmann,et al.  The fragile X mental retardation protein binds specifically to its mRNA via a purine quartet motif , 2001, The EMBO journal.

[157]  Chunxiang Zhang MicroRNAs: role in cardiovascular biology and disease. , 2008, Clinical science.

[158]  Michael P. Stryker,et al.  Reversing Neurodevelopmental Disorders in Adults , 2008, Neuron.

[159]  P. Sullivan,et al.  Schizophrenia as a complex trait: evidence from a meta-analysis of twin studies. , 2003, Archives of general psychiatry.

[160]  David Baltimore,et al.  MicroRNA-155 is induced during the macrophage inflammatory response , 2007, Proceedings of the National Academy of Sciences.

[161]  D. Gorski,et al.  Regulation of angiogenesis through a microRNA (miR-130a) that down-regulates antiangiogenic homeobox genes GAX and HOXA5. , 2008, Blood.

[162]  Phillip D. Zamore,et al.  Ribo-gnome: The Big World of Small RNAs , 2005, Science.

[163]  Sunit K. Singh miRNAs: from neurogeneration to neurodegeneration. , 2007, Pharmacogenomics.

[164]  Bibekanand Mallick,et al.  Cellular versus viral microRNAs in host–virus interaction , 2008, Nucleic acids research.

[165]  A. Saïb,et al.  A Cellular MicroRNA Mediates Antiviral Defense in Human Cells , 2005, Science.

[166]  S Amerini,et al.  Nitric oxide mediates angiogenesis in vivo and endothelial cell growth and migration in vitro promoted by substance P. , 1994, The Journal of clinical investigation.

[167]  J. Castle,et al.  Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs , 2005, Nature.

[168]  J. M. Thomson,et al.  Micro‐RNAs as Oncogenes and Tumour Suppressors , 2007 .

[169]  Kaleb M. Pauley,et al.  MicroRNA in autoimmunity and autoimmune diseases. , 2009, Journal of autoimmunity.

[170]  B. D. de Vries,et al.  The fragile X syndrome. , 1998, Journal of medical genetics.

[171]  Keiichiro Nishida,et al.  Expression of microRNA-146 in rheumatoid arthritis synovial tissue. , 2008, Arthritis and rheumatism.

[172]  E. Petricoin,et al.  General keynote: proteomic patterns in sera serve as biomarkers of ovarian cancer. , 2003, Gynecologic oncology.

[173]  Michael Detmar,et al.  Altered expression of MicroRNA in synovial fibroblasts and synovial tissue in rheumatoid arthritis. , 2008, Arthritis and rheumatism.