Quantum Algorithms of Solving the Backtracking of One-dimensional Cellular Automata

In [Wolfram 1982; Wolfram 1983; Wolfram 2002], the backtracking of one-dimensional cellular automata is to find out which of the 2n possible initial configurations of width n evolve to a specific configuration. In this paper, in one-dimensional cellular automata for a specific configuration of width n, its unique initial configuration can be found by mean of the proposed quantum algorithm with polynomial quantum gates, polynomial quantum bits and the successful probability that is the same as that of Shor's quantum order-finding algorithm in [Shor 1994].

[1]  Lov K. Grover A fast quantum mechanical algorithm for database search , 1996, STOC '96.

[2]  D. Meyer From quantum cellular automata to quantum lattice gases , 1996, quant-ph/9604003.

[3]  S. Bhanja,et al.  Probabilistic Modeling of QCA Circuits Using Bayesian Networks , 2006, IEEE Transactions on Nanotechnology.

[4]  L M Adleman,et al.  Molecular computation of solutions to combinatorial problems. , 1994, Science.

[5]  Saket Srivastava,et al.  Hierarchical Probabilistic Macromodeling for QCA Circuits , 2007, IEEE Transactions on Computers.

[6]  Albert Y. Zomaya,et al.  Evolving Cellular Automata for Location Management in Mobile Computing Networks , 2003, IEEE Trans. Parallel Distributed Syst..

[7]  Kyung Joon Kwak,et al.  Cyclic Cellular Automata: A Tool for Self-Organizing Sleep Scheduling in Sensor Networks , 2008, 2008 International Conference on Information Processing in Sensor Networks (ipsn 2008).

[8]  Kai Nagel,et al.  Realistic multi-lane traffic rules for cellular automata , 1997 .

[9]  Michael Schreckenberg,et al.  Two lane traffic simulations using cellular automata , 1995, cond-mat/9512119.

[10]  John Watrous,et al.  On one-dimensional quantum cellular automata , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[11]  Michael Schreckenberg,et al.  A cellular automaton model for freeway traffic , 1992 .

[12]  E.W. Johnson,et al.  Incorporating standard CMOS design Process methodologies into the QCA logic design process , 2004, IEEE Transactions on Nanotechnology.

[13]  Kay Römer,et al.  Algorithms for generic role assignment in wireless sensor networks , 2005, SenSys '05.

[14]  Sandor Imre,et al.  Quantum Computing and Communications: An Engineering Approach , 2005 .

[15]  Neil F. Johnson,et al.  Cellular automata models of traffic flow along a highway containing a junction , 1996 .

[16]  J. Neumann The General and Logical Theory of Au-tomata , 1963 .

[17]  Antonio Alfredo Ferreira Loureiro,et al.  Simulating large wireless sensor networks using cellular automata , 2005, 38th Annual Simulation Symposium.

[18]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[19]  D. Tougaw,et al.  Implementation of a crossbar network using quantum-dot cellular automata , 2005, IEEE Transactions on Nanotechnology.

[20]  Peter W. Shor,et al.  Algorithms for quantum computation: discrete logarithms and factoring , 1994, Proceedings 35th Annual Symposium on Foundations of Computer Science.

[21]  Whitfield Diffie,et al.  New Directions in Cryptography , 1976, IEEE Trans. Inf. Theory.

[22]  Stephen Wolfram,et al.  Cellular automata as simple self-organizing systems , 1982 .

[23]  S. Wolfram Statistical mechanics of cellular automata , 1983 .

[24]  Stephen Wolfram,et al.  A New Kind of Science , 2003, Artificial Life.

[25]  R. K. Shyamasundar,et al.  Introduction to algorithms , 1996 .

[26]  M. Schreckenberg,et al.  Microscopic Simulation of Urban Traffic Based on Cellular Automata , 1997 .

[27]  Frances L. Van Scoy,et al.  Using Cellular Automata to Determine Bounds for Measuring the Efficiency of Broadcast Algorithms in Highly Mobile Ad Hoc Networks , 2004, ACRI.

[28]  P. D. Tougaw,et al.  Logical devices implemented using quantum cellular automata , 1994 .