Chimeric spike mRNA vaccines protect against Sarbecovirus challenge in mice

The emergence of SARS-CoV in 2003 and SARS-CoV-2 in 2019 highlights the need to develop universal vaccination strategies against the broader Sarbecovirus subgenus. Using chimeric spike designs, we demonstrate protection against challenge from SARS-CoV, SARS-CoV-2, SARS-CoV-2 B.1.351, bat CoV (Bt-CoV) RsSHC014, and a heterologous Bt-CoV WIV-1 in vulnerable aged mice. Chimeric spike mRNAs induced high levels of broadly protective neutralizing antibodies against high-risk Sarbecoviruses. In contrast, SARS-CoV-2 mRNA vaccination not only showed a marked reduction in neutralizing titers against heterologous Sarbecoviruses, but SARS-CoV and WIV-1 challenge in mice resulted in breakthrough infection. Chimeric spike mRNA vaccines efficiently neutralized D614G, UK B.1.1.7., mink cluster five, and the South African B.1.351 variant of concern. Thus, multiplexed-chimeric spikes can prevent SARS-like zoonotic coronavirus infections with pandemic potential. Sentence Chimerized RBD, NTD, and S2 spike mRNA-LNPs protect mice against epidemic, zoonotic, and pandemic SARS-like viruses

[1]  Ilya J. Finkelstein,et al.  Prevalent, protective, and convergent IgG recognition of SARS-CoV-2 non-RBD spike epitopes , 2021, Science.

[2]  B. Haynes,et al.  A broadly neutralizing antibody protects against SARS-CoV, pre-emergent bat CoVs, and SARS-CoV-2 variants in mice , 2021, bioRxiv.

[3]  D. Burton,et al.  A human antibody reveals a conserved site on beta-coronavirus spike proteins and confers protection against SARS-CoV-2 infection , 2021, bioRxiv.

[4]  N. Sullivan,et al.  Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine , 2021, The New England journal of medicine.

[5]  W. Koff,et al.  A universal coronavirus vaccine , 2021, Science.

[6]  Rachel L. Spreng,et al.  SARS-CoV-2 vaccination induces neutralizing antibodies against pandemic and pre-emergent SARS-related coronaviruses in monkeys , 2021, bioRxiv.

[7]  N. Sullivan,et al.  Serum Neutralizing Activity Elicited by mRNA-1273 Vaccine - Preliminary Report. , 2021, The New England journal of medicine.

[8]  Lisa E. Gralinski,et al.  Broad and potent activity against SARS-like viruses by an engineered human monoclonal antibody , 2021, Science.

[9]  Larissa B. Thackray,et al.  Neutralizing and protective human monoclonal antibodies recognizing the N-terminal domain of the SARS-CoV-2 spike protein , 2021, Cell.

[10]  M. Beltramello,et al.  N-terminal domain antigenic mapping reveals a site of vulnerability for SARS-CoV-2 , 2021, bioRxiv.

[11]  M. Nussenzweig,et al.  Mosaic nanoparticles elicit cross-reactive immune responses to zoonotic coronaviruses in mice , 2020, Science.

[12]  P. Zhou,et al.  SARS-CoV-2 spillover events , 2021, Science.

[13]  C. Woods,et al.  The functions of SARS-CoV-2 neutralizing and infection-enhancing antibodies in vitro and in mice and nonhuman primates , 2021, bioRxiv.

[14]  J. Mascola,et al.  Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine , 2020, The New England journal of medicine.

[15]  D. Weissman,et al.  SARS-CoV-2 mRNA Vaccines Foster Potent Antigen-Specific Germinal Center Responses Associated with Neutralizing Antibody Generation , 2020, Immunity.

[16]  E. Walsh,et al.  Safety and Immunogenicity of Two RNA-Based Covid-19 Vaccine Candidates , 2020, The New England journal of medicine.

[17]  R. Baric,et al.  Swine acute diarrhea syndrome coronavirus replication in primary human cells reveals potential susceptibility to infection , 2020, Proceedings of the National Academy of Sciences.

[18]  D. Weissman,et al.  Protection against herpes simplex virus type 2 infection in a neonatal murine model using a trivalent nucleoside-modified mRNA in lipid nanoparticle vaccine , 2020, Vaccine.

[19]  R. Baric,et al.  Safety and Immunogenicity of SARS-CoV-2 mRNA-1273 Vaccine in Older Adults , 2020, The New England journal of medicine.

[20]  Lisa E. Gralinski,et al.  A Mouse-Adapted SARS-CoV-2 Induces Acute Lung Injury and Mortality in Standard Laboratory Mice , 2020, Cell.

[21]  Rebecca J. Loomis,et al.  SARS-CoV-2 mRNA Vaccine Design Enabled by Prototype Pathogen Preparedness , 2020, Nature.

[22]  D. Weissman,et al.  A Single Immunization with Nucleoside-Modified mRNA Vaccines Elicits Strong Cellular and Humoral Immune Responses against SARS-CoV-2 in Mice , 2020, Immunity.

[23]  Rebecca J. Loomis,et al.  Evaluation of the mRNA-1273 Vaccine against SARS-CoV-2 in Nonhuman Primates , 2020, The New England journal of medicine.

[24]  D. Lauffenburger,et al.  Single-Shot Ad26 Vaccine Protects Against SARS-CoV-2 in Rhesus Macaques , 2020, Nature.

[25]  J. Sodroski,et al.  Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike , 2020, Nature.

[26]  J. Mascola,et al.  An mRNA Vaccine against SARS-CoV-2 — Preliminary Report , 2020, The New England journal of medicine.

[27]  D. Weissman,et al.  An HSV-2 nucleoside-modified mRNA genital herpes vaccine containing glycoproteins gC, gD, and gE protects mice against HSV-1 genital lesions and latent infection , 2020, PLoS pathogens.

[28]  G. Gao,et al.  A Universal Design of Betacoronavirus Vaccines against COVID-19, MERS, and SARS , 2020, Cell.

[29]  Qiang Zhou,et al.  A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2 , 2020, Science.

[30]  A. Sette,et al.  The receptor binding domain of the viral spike protein is an immunodominant and highly specific target of antibodies in SARS-CoV-2 patients , 2020, Science Immunology.

[31]  Lisa E. Gralinski,et al.  SARS-CoV-2 Reverse Genetics Reveals a Variable Infection Gradient in the Respiratory Tract , 2020, Cell.

[32]  D. Weissman,et al.  A Multi-Targeting, Nucleoside-Modified mRNA Influenza Virus Vaccine Provides Broad Protection in Mice. , 2020, Molecular therapy : the journal of the American Society of Gene Therapy.

[33]  Xiaotao Lu,et al.  An orally bioavailable broad-spectrum antiviral inhibits SARS-CoV-2 in human airway epithelial cell cultures and multiple coronaviruses in mice , 2020, Science Translational Medicine.

[34]  A. M. Leontovich,et al.  The species Severe acute respiratory syndrome-related coronavirus: classifying 2019-nCoV and naming it SARS-CoV-2 , 2020, Nature Microbiology.

[35]  Kai Zhao,et al.  A pneumonia outbreak associated with a new coronavirus of probable bat origin , 2020, Nature.

[36]  Catharine I Paules,et al.  Coronavirus Infections-More Than Just the Common Cold. , 2020, JAMA.

[37]  R. Baric,et al.  Comparative therapeutic efficacy of remdesivir and combination lopinavir, ritonavir, and interferon beta against MERS-CoV , 2020, Nature Communications.

[38]  Barney S. Graham,et al.  Structural Definition of a Neutralization-Sensitive Epitope on the MERS-CoV S1-NTD , 2019, Cell Reports.

[39]  D. Weissman,et al.  Nucleoside-modified mRNA encoding HSV-2 glycoproteins C, D, and E prevents clinical and subclinical genital herpes , 2019, Science Immunology.

[40]  P. Daszak,et al.  Fatal swine acute diarrhoea syndrome caused by an HKU2-related coronavirus of bat origin , 2018, Nature.

[41]  D. Meyerholz,et al.  Memory CD8 T cells mediate severe immunopathology following respiratory syncytial virus infection , 2018, PLoS pathogens.

[42]  Ning Wang,et al.  Discovery of a rich gene pool of bat SARS-related coronaviruses provides new insights into the origin of SARS coronavirus , 2017, PLoS pathogens.

[43]  Lisa E. Gralinski,et al.  Broad-spectrum antiviral GS-5734 inhibits both epidemic and zoonotic coronaviruses , 2017, Science Translational Medicine.

[44]  Lisa E. Gralinski,et al.  SARS-like WIV1-CoV poised for human emergence , 2016, Proceedings of the National Academy of Sciences.

[45]  Lisa E. Gralinski,et al.  A SARS-like cluster of circulating bat coronaviruses shows potential for human emergence , 2015, Nature Medicine.

[46]  N. Petrovsky,et al.  Severe Acute Respiratory Syndrome-Associated Coronavirus Vaccines Formulated with Delta Inulin Adjuvants Provide Enhanced Protection while Ameliorating Lung Eosinophilic Immunopathology , 2014, Journal of Virology.

[47]  J. Epstein,et al.  Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor , 2013, Nature.

[48]  A. Osterhaus,et al.  Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. , 2012, The New England journal of medicine.

[49]  Lisa E. Gralinski,et al.  A Double-Inactivated Severe Acute Respiratory Syndrome Coronavirus Vaccine Provides Incomplete Protection in Mice and Induces Increased Eosinophilic Proinflammatory Pulmonary Response upon Challenge , 2011, Journal of Virology.

[50]  Arthur S Slutsky,et al.  An official American Thoracic Society workshop report: features and measurements of experimental acute lung injury in animals. , 2011, American journal of respiratory cell and molecular biology.

[51]  R. Johnston,et al.  Synthetic recombinant bat SARS-like coronavirus is infectious in cultured cells and in mice , 2008, Proceedings of the National Academy of Sciences.

[52]  Ralph Baric,et al.  A Mouse-Adapted SARS-Coronavirus Causes Disease and Mortality in BALB/c Mice , 2007, PLoS pathogens.

[53]  Jonathan H. Epstein,et al.  Bats Are Natural Reservoirs of SARS-Like Coronaviruses , 2005, Science.

[54]  Dongling Yang,et al.  A human SARS-CoV neutralizing antibody against epitope on S2 protein , 2005, Biochemical and Biophysical Research Communications.

[55]  P. Krogstad,et al.  SARS: The First Pandemic of the 21st Century , 2004, Pediatric Research.

[56]  A. Berger,et al.  Das SARS-assoziierte Coronavirus – Die erste Pandemie des 21. Jahrhunderts / The SARS-associated coronavirus – The first pandemic of the 21st century , 2004 .

[57]  David H. L. Bishop,et al.  The International Committee on Taxonomy of Viruses , 1995 .

[58]  M. Lai,et al.  A clustering of rna recombination sites adjacent to a hypervariable region of the peplomer gene of murine coronavirus , 1990, Virology.

[59]  M. Lai,et al.  RNA recombination of murine coronaviruses: recombination between fusion-positive mouse hepatitis virus A59 and fusion-negative mouse hepatitis virus 2 , 1988, Journal of virology.