Creep Mechanisms in Bone and Dentin Via High-Energy X-ray Diffraction

[1]  S. Stock,et al.  Synchrotron X-ray diffraction study of load partitioning during elastic deformation of bovine dentin. , 2010, Acta biomaterialia.

[2]  Yi Zhang,et al.  Evaluation of Dentinal Viscoelastic Properties Based on its Microstructural Characters , 2008 .

[3]  R. Akhtar,et al.  Load transfer in bovine plexiform bone determined by synchrotron x-ray diffraction , 2008 .

[4]  S. Stock,et al.  Micromechanical response of mineral and collagen phases in bone. , 2007, Journal of structural biology.

[5]  Wolfgang Wagermaier,et al.  Cooperative deformation of mineral and collagen in bone at the nanoscale , 2006, Proceedings of the National Academy of Sciences.

[6]  S. Stock,et al.  Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction. , 2005, Journal of structural biology.

[7]  J. Kinney,et al.  The Importance of Intrafibrillar Mineralization of Collagen on the Mechanical Properties of Dentin , 2003, Journal of dental research.

[8]  F. Tay,et al.  Viscoelastic properties of demineralized dentin matrix. , 2003, Dental materials : official publication of the Academy of Dental Materials.

[9]  J. Palamara,et al.  Time-dependent properties of human root dentin. , 2002, Dental materials : official publication of the Academy of Dental Materials.

[10]  P. Fratzl,et al.  Viscoelastic properties of collagen: synchrotron radiation investigations and structural model. , 2002, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[11]  T. McMahon,et al.  Results from demineralized bone creep tests suggest that collagen is responsible for the creep behavior of bone. , 1999, Journal of biomechanical engineering.

[12]  N. Sasaki,et al.  Time-resolved X-ray diffraction from tendon collagen during creep using synchrotron radiation. , 1999, Journal of biomechanics.

[13]  N. Sasaki,et al.  Measurement of partition of stress between mineral and collagen phases in bone using X-ray diffraction techniques. , 1997, Journal of biomechanics.

[14]  G. M. Carter,et al.  Stress relaxation properties of human dentin. , 1995, Dental materials : official publication of the Academy of Dental Materials.

[15]  W. Walsh,et al.  Bone composite behaviour: effects of mineral-organic bonding , 1994 .

[16]  N. Sasaki,et al.  Stress relaxation function of bone and bone collagen. , 1993, Journal of biomechanics.

[17]  T. Santner,et al.  The effect of temperature, stress and microstructure on the creep of compact bovine bone. , 1993, Journal of biomechanics.

[18]  J. Cohen,et al.  Residual Stress: Measurement by Diffraction and Interpretation , 1987 .

[19]  H. Mook,et al.  Neutron diffraction studies of collagen in fully mineralized bone. , 1985, Journal of molecular biology.

[20]  S. Pollack,et al.  Viscoelastic properties of human dentin. , 1975, Journal of biomedical materials research.

[21]  E. P. Katz,et al.  Structure and function of bone collagen fibrils. , 1973, Journal of molecular biology.

[22]  D. Watts,et al.  Creep and Viscoelastic Behaviour of Human Dentin , 2004 .

[23]  C. M. Agrawal,et al.  Collagen and bone viscoelasticity: a dynamic mechanical analysis. , 2002, Journal of biomedical materials research.

[24]  W. Walsh,et al.  Compressive properties of cortical bone: mineral-organic interfacial bonding. , 1994, Biomaterials.