The advances in wireless sensor devices, big data, mobile computing, and cloud computing offer tremendous opportunities to realize the seamless integration between the physical world and the cyber space. The cloud-integrated cyberphysical system (CCPS) refers to virtually representing physical system components, such as sensors, actuators, robots, and other devices in clouds, accessing (e.g., monitoring, actuating and navigating) those physical components through their virtual representations, and processing/managing/controlling the large amount of data collected from physical components in clouds in a scalable, real-time, efficient, and reliable manner. Particularly, integrating cloud computing techniques (e.g., virtualization, elastic re-configuration, and multi-tenancy of resources) with CPS techniques (e.g., real-time scheduling, adaptive resource management and control, and embedded system design) will bring hope to advance the state of the art, and allow previously unachievable systems such as cloud-integrated internet of vehicles to be built, deployed, managed, and controlled effectively. This Special Issue on CCPS solicits the manuscripts on rigorous research on theories, methodologies, tools, and testbeds for CCPS. In this special issue, we selected ten papers. Each paper was carefully reviewed by peer review and guest editors. In the following, we will overview the accepted papers that reflect recent advances.