A multi-scale modeling framework for instabilities of film/substrate systems

Spatial pattern formation in stiff thin films on soft substrates is investigated from a multi-scale point of view based on a technique of slowly varying Fourier coefficients. A general macroscopic modeling framework is developed and then a simplified macroscopic model is derived. The model incorporates Asymptotic Numerical Method (ANM) as a robust path-following technique to trace the post-buckling evolution path and to predict secondary bifurcations. The proposed multi-scale finite element framework allows sinusoidal and square checkerboard patterns as well as their bifurcation portraits to be described from a quantitative standpoint. Moreover, it provides an efficient way to compute large-scale instability problems with a significant reduction of computational cost compared to full models.

[1]  Yanping Cao,et al.  Localized ridge wrinkling of stiff films on compliant substrates , 2012 .

[2]  Marc Medale,et al.  Power series analysis as a major breakthrough to improve the efficiency of Asymptotic Numerical Method in the vicinity of bifurcations , 2013, J. Comput. Phys..

[3]  P. Vannucci,et al.  An asymptotic-numerical method to compute bifurcating branches , 1998 .

[4]  Yanping Cao,et al.  From wrinkles to creases in elastomers: the instability and imperfection-sensitivity of wrinkling , 2012, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[5]  John A. Rogers,et al.  Buckling of a stiff thin film on a compliant substrate in large deformation , 2008 .

[6]  Michel Potier-Ferry,et al.  A generalized continuum approach to predict local buckling patterns of thin structures , 2008 .

[7]  Yibin Fu,et al.  On the imperfection sensitivity of a coated elastic half-space , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[8]  Salim Belouettar,et al.  3D finite element modeling for instabilities in thin films on soft substrates , 2014 .

[9]  Salim Belouettar,et al.  A new Fourier-related double scale analysis for instability phenomena in sandwich structures , 2012 .

[10]  Michel Potier-Ferry,et al.  A New method to compute perturbed bifurcations: Application to the buckling of imperfect elastic structures , 1990 .

[11]  Guillaume Rateau,et al.  The Arlequin method as a flexible engineering design tool , 2005 .

[12]  L. Mahadevan,et al.  Nested self-similar wrinkling patterns in skins , 2005, Nature materials.

[13]  Michel Potier-Ferry,et al.  Influence of local wrinkling on membrane behaviour: A new approach by the technique of slowly variable Fourier coefficients , 2010 .

[14]  John Whitehead,et al.  Finite bandwidth, finite amplitude convection , 1969, Journal of Fluid Mechanics.

[15]  Arezki Boudaoud,et al.  Multiple-length-scale elastic instability mimics parametric resonance of nonlinear oscillators , 2010, 1006.2404.

[16]  Jeong-Yun Sun,et al.  Folding wrinkles of a thin stiff layer on a soft substrate , 2011, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[17]  T. Shield,et al.  The Buckling of an Elastic Layer Bonded to an Elastic Substrate in Plane Strain , 1994 .

[18]  Sébastien Baguet,et al.  On the behaviour of the ANM continuation in the presence of bifurcations , 2003 .

[19]  Michel Potier-Ferry,et al.  Méthode asymptotique numérique , 2008 .

[20]  Y. Koutsawa,et al.  Instabilities in thin films on hyperelastic substrates by 3D finite elements , 2015 .

[21]  Christopher M. Stafford,et al.  Instabilities as a measurement tool for soft materials , 2010 .

[22]  Yanping Cao,et al.  Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers , 2012 .

[23]  Xi-Qiao Feng,et al.  Buckling and post-buckling of a stiff film resting on an elastic graded substrate , 2012 .

[24]  E. J. Doedel,et al.  AUTO: a program for the automatic bifurcation analysis of autonomous systems , 1980 .

[25]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[26]  S. Belouettar,et al.  Multiple bifurcations in wrinkling analysis of thin films on compliant substrates , 2015 .

[27]  Hamid Zahrouni,et al.  Bifurcation points and bifurcated branches by an asymptotic numerical method and Padé approximants , 2004 .

[28]  Bruno Cochelin,et al.  Asymptotic-numerical methods and pade approximants for non-linear elastic structures , 1994 .

[29]  Heng Hu,et al.  About macroscopic models of instability pattern formation , 2012 .

[30]  Z. Suo,et al.  Nonlinear analyses of wrinkles in a film bonded to a compliant substrate , 2005 .

[31]  L Mahadevan,et al.  Self-Organized Origami , 2005, Science.

[32]  B. Audoly,et al.  Buckling of a stiff film bound to a compliant substrate—Part I:: Formulation, linear stability of cylindrical patterns, secondary bifurcations , 2008 .

[33]  Yonggang Huang,et al.  Materials and Mechanics for Stretchable Electronics , 2010, Science.

[34]  B. Audoly,et al.  Buckling of a stiff film bound to a compliant substrate—Part II:: A global scenario for the formation of herringbone pattern , 2008 .

[35]  B. Audoly,et al.  Buckling of a stiff film bound to a compliant substrate—Part III:: Herringbone solutions at large buckling parameter , 2008 .

[36]  Heng Hu,et al.  New nonlinear multi-scale models for wrinkled membranes , 2013 .

[37]  Khadija Mhada,et al.  A 2D Fourier double scale analysis of global-local instability interaction in sandwich structures , 2013 .

[38]  R. Ogden,et al.  On Surface Waves and Deformations in a Pre-stressed Incompressible Elastic Solid , 1990 .

[39]  Marc Medale,et al.  A parallel computer implementation of the Asymptotic Numerical Method to study thermal convection instabilities , 2009, J. Comput. Phys..

[40]  R. Ogden,et al.  Plane deformations of elastic solids with intrinsic boundary elasticity , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[41]  Michel Potier-Ferry,et al.  Membrane wrinkling revisited from a multi-scale point of view , 2014, Adv. Model. Simul. Eng. Sci..

[42]  Salim Belouettar,et al.  Bridging techniques in a multi-scale modeling of pattern formation , 2014 .

[43]  Zongxi Cai,et al.  Exact and asymptotic stability analyses of a coated elastic half-space , 2000 .

[44]  A. Mielke,et al.  Theory of steady Ginzburg-Landau equation, in hydrodynamic stability problems , 1989 .

[45]  George M. Whitesides,et al.  Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer , 1998, Nature.

[46]  J. Hutchinson,et al.  Herringbone Buckling Patterns of Compressed Thin Films on Compliant Substrates , 2004 .

[47]  R. S. Rivlin,et al.  Surface waves in deformed elastic materials , 1961 .

[48]  S. Zaleski,et al.  Cellular Structures in Instabilities , 1984 .

[49]  B. Cochelin A path-following technique via an asymptotic-numerical method , 1994 .

[50]  Zhigang Suo,et al.  Periodic patterns and energy states of buckled films on compliant substrates , 2011 .

[51]  Rui Huang,et al.  Dynamics of wrinkle growth and coarsening in stressed thin films. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  J. Dunkel,et al.  Curvature-induced symmetry breaking determines elastic surface patterns. , 2015, Nature materials.

[53]  Fan Xu Numerical study of instability patterns of film-substrate systems , 2014 .

[54]  Hachmi Ben Dhia,et al.  Multiscale mechanical problems: the Arlequin method , 1998 .

[55]  M. Potier-Ferry,et al.  A generalized continuum approach to describe instability pattern formation by a multiple scale analysis , 2006 .