Decomposition and Enumeration of Triangulated Surfaces

We describe some theoretical results on triangulations of surfaces and we develop a theory on roots, decompositions, and genus surfaces. We apply this theory to describe an algorithm to list all triangulations of closed surfaces with at most a fixed number of vertices. We specialize the theory to the case that the number of vertices is at most 11, and we obtain theoretical restrictions on genus surfaces, allowing us to obtain a list of all triangulations of closed surfaces with at most 11 vertices.

[1]  Lars Schewe,et al.  Nonrealizable Minimal Vertex Triangulations of Surfaces: Showing Nonrealizability Using Oriented Matroids and Satisfiability Solvers , 2008, Discret. Comput. Geom..

[2]  Thom Sulanke Irreducible triangulations of low genus surfaces , 2006 .

[3]  S. Hougardy,et al.  Surface realization with the intersection edge functional , 2006, math/0608538.

[4]  E. Steinitz,et al.  Vorlesungen über die Theorie der Polyeder unter Einfluss der Elemente der Topologie , 1934 .

[5]  G. Ringel,et al.  Wie man die geschlossenen nichtorientierbaren Flächen in möglichst wenig Dreiecke zerlegen kann , 1955 .

[6]  Frank H. Lutz,et al.  Konrad-zuse-zentrum F ¨ Ur Informationstechnik Berlin Enumeration and Random Realization of Triangulated Surfaces Enumeration and Random Realization of Triangulated Surfaces , 2022 .

[7]  Mariano Zelke,et al.  Surface Realization with the Intersection Segment Functional , 2010, Exp. Math..

[8]  Frank H. Lutz,et al.  Isomorphism-free lexicographic enumeration of triangulated surfaces and 3-manifolds , 2006, Eur. J. Comb..

[9]  Lukas Fins hiy,et al.  Generation of Oriented Matroids , 2002 .

[10]  G. Ringel,et al.  Minimal triangulations on orientable surfaces , 1980 .

[11]  Basudeb Datta,et al.  Two-dimensional weak pseudomanifolds on eight vertices , 2002 .

[12]  António Guedes de Oliveira,et al.  On the Generation of Oriented Matroids , 2000, Discret. Comput. Geom..

[13]  F. Enriques,et al.  Encyklopädie der Mathematischen Wissenschaften mit Einschluss ihrer Anwendungen: Dritter Band: Geometrie , 1910 .

[14]  P. J. Heawood Map-Colour Theorem , 1949 .

[15]  D. Barnette,et al.  All 2-manifolds have finitely many minimal triangulations , 1989 .