A Volume Inequality for Quantum Fisher Information and the Uncertainty Principle
暂无分享,去创建一个
[1] T. Isola,et al. Uncertainty principle and quantum Fisher information , 2005, math-ph/0509046.
[2] Born Reciprocity and the Granularity of Spacetime , 2005, math-ph/0508041.
[3] Shunlong Luo,et al. Quantum Fisher Information and Uncertainty Relations , 2000 .
[4] D. Petz. Monotone metrics on matrix spaces , 1996 .
[5] T. Isola,et al. Uncertainty principle and quantum Fisher information. II. , 2007 .
[6] P. Gibilisco,et al. Inequality for Quantum Fisher Information and the Uncertainty Principle , 2007 .
[7] H. P. Robertson. An Indeterminacy Relation for Several Observables and Its Classical Interpretation , 1934 .
[8] D. Petz,et al. Geometries of quantum states , 1996 .
[9] D. A. Trifonov. Generalizations of Heisenberg uncertainty relation , 2001 .
[10] About Heisenberg Uncertainty Relation (by E. Schrödinger) , 1999, quant-ph/9903100.
[11] Dénes Petz,et al. Means of Positive Numbers and Matrices , 2005, SIAM J. Matrix Anal. Appl..
[12] D. Trifonov. Generalized intelligent states and squeezing , 1994 .
[13] H. P. Robertson. The Uncertainty Principle , 1929 .
[14] N. Čencov. Statistical Decision Rules and Optimal Inference , 2000 .
[15] Frank Hansen. Metric adjusted skew information , 2008, Proceedings of the National Academy of Sciences.
[16] Kenjiro Yanagi,et al. A generalized skew information and uncertainty relation , 2005, IEEE Trans. Inf. Theory.
[17] K. Życzkowski,et al. Geometry of Quantum States , 2007 .
[18] On the Euler angles for SU(N) , 2005, math-ph/0510075.
[19] T. Isola,et al. Wigner–Yanase information on quantum state space: The geometric approach , 2003 .
[20] Representations and properties of generalized Ar statistics, coherent states and Robertson uncertainty relations , 2006, math-ph/0606050.
[21] F. Hansen. Extensions of Lieb’s Concavity Theorem , 2005, math-ph/0511090.
[22] S. Luo,et al. Correlation and Entanglement , 2003 .
[23] E. Schrodinger,et al. About Heisenberg Uncertainty Relation , 1930 .
[24] Qiang Zhang,et al. On skew information , 2004, IEEE Transactions on Information Theory.
[25] P. Gibilisco,et al. On the monotonicity of scalar curvature in classical and quantum information geometry , 2004, math-ph/0407007.
[26] E. H. Kennard. Zur Quantenmechanik einfacher Bewegungstypen , 1927 .
[27] Shunlong Luo,et al. Correction to "On Skew Information" , 2005, IEEE Trans. Inf. Theory.
[28] Zhengmin Zhang,et al. An Informational Characterization of Schrödinger's Uncertainty Relations , 2004 .
[29] S. S. Mizrahi,et al. Separability dynamics of two-mode Gaussian states in parametric conversion and amplification , 2005 .
[30] Paolo Gibilisco,et al. A CHARACTERISATION OF WIGNER YANASE SKEW INFORMATION AMONG STATISTICALLY MONOTONE METRICS , 2001 .
[31] T. Andô,et al. Means of positive linear operators , 1980 .
[32] Hideki Kosaki. Matrix Trace Inequalities Related to Uncertainty Principle , 2005 .
[33] P. Gibilisco,et al. On the characterisation of paired monotone metrics , 2003, math/0303059.
[34] S. Luo. Wigner-Yanase skew information and uncertainty relations. , 2003, Physical review letters.
[35] State extended uncertainty relations , 2000, quant-ph/0005086.
[36] W. Heisenberg. Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .