A Volume Inequality for Quantum Fisher Information and the Uncertainty Principle

Abstract Let A1,…,AN be complex self-adjoint matrices and let ρ be a density matrix. The Robertson uncertainty principle $$\det\{\mathop{Cov}_{\rho}(A_{h},A_{j})\}\geq \det \biggl\{-\frac{i}{2}\mathop{Tr}(\rho [A_{h},A_{j}])\biggr\}$$ gives a bound for the quantum generalized covariance in terms of the commutators [Ah,Aj]. The right side matrix is antisymmetric and therefore the bound is trivial (equal to zero) in the odd case N=2m+1. Let f be an arbitrary normalized symmetric operator monotone function and let 〈⋅,⋅〉ρ,f be the associated quantum Fisher information. Based on previous results of several authors, we propose here as a conjecture the inequality $$\det\{\mathop{Cov}_{\rho}(A_{h},A_{j})\}\geq \det \biggl\{\frac{f(0)}{2}\langle i[\rho,A_{h}],i[\rho,A_{j}]\rangle_{\rho,f}\biggr\}$$ whose validity would give a non-trivial bound for any N∈ℕ using the commutators i[ρ,Ah].

[1]  T. Isola,et al.  Uncertainty principle and quantum Fisher information , 2005, math-ph/0509046.

[2]  Born Reciprocity and the Granularity of Spacetime , 2005, math-ph/0508041.

[3]  Shunlong Luo,et al.  Quantum Fisher Information and Uncertainty Relations , 2000 .

[4]  D. Petz Monotone metrics on matrix spaces , 1996 .

[5]  T. Isola,et al.  Uncertainty principle and quantum Fisher information. II. , 2007 .

[6]  P. Gibilisco,et al.  Inequality for Quantum Fisher Information and the Uncertainty Principle , 2007 .

[7]  H. P. Robertson An Indeterminacy Relation for Several Observables and Its Classical Interpretation , 1934 .

[8]  D. Petz,et al.  Geometries of quantum states , 1996 .

[9]  D. A. Trifonov Generalizations of Heisenberg uncertainty relation , 2001 .

[10]  About Heisenberg Uncertainty Relation (by E. Schrödinger) , 1999, quant-ph/9903100.

[11]  Dénes Petz,et al.  Means of Positive Numbers and Matrices , 2005, SIAM J. Matrix Anal. Appl..

[12]  D. Trifonov Generalized intelligent states and squeezing , 1994 .

[13]  H. P. Robertson The Uncertainty Principle , 1929 .

[14]  N. Čencov Statistical Decision Rules and Optimal Inference , 2000 .

[15]  Frank Hansen Metric adjusted skew information , 2008, Proceedings of the National Academy of Sciences.

[16]  Kenjiro Yanagi,et al.  A generalized skew information and uncertainty relation , 2005, IEEE Trans. Inf. Theory.

[17]  K. Życzkowski,et al.  Geometry of Quantum States , 2007 .

[18]  On the Euler angles for SU(N) , 2005, math-ph/0510075.

[19]  T. Isola,et al.  Wigner–Yanase information on quantum state space: The geometric approach , 2003 .

[20]  Representations and properties of generalized Ar statistics, coherent states and Robertson uncertainty relations , 2006, math-ph/0606050.

[21]  F. Hansen Extensions of Lieb’s Concavity Theorem , 2005, math-ph/0511090.

[22]  S. Luo,et al.  Correlation and Entanglement , 2003 .

[23]  E. Schrodinger,et al.  About Heisenberg Uncertainty Relation , 1930 .

[24]  Qiang Zhang,et al.  On skew information , 2004, IEEE Transactions on Information Theory.

[25]  P. Gibilisco,et al.  On the monotonicity of scalar curvature in classical and quantum information geometry , 2004, math-ph/0407007.

[26]  E. H. Kennard Zur Quantenmechanik einfacher Bewegungstypen , 1927 .

[27]  Shunlong Luo,et al.  Correction to "On Skew Information" , 2005, IEEE Trans. Inf. Theory.

[28]  Zhengmin Zhang,et al.  An Informational Characterization of Schrödinger's Uncertainty Relations , 2004 .

[29]  S. S. Mizrahi,et al.  Separability dynamics of two-mode Gaussian states in parametric conversion and amplification , 2005 .

[30]  Paolo Gibilisco,et al.  A CHARACTERISATION OF WIGNER YANASE SKEW INFORMATION AMONG STATISTICALLY MONOTONE METRICS , 2001 .

[31]  T. Andô,et al.  Means of positive linear operators , 1980 .

[32]  Hideki Kosaki Matrix Trace Inequalities Related to Uncertainty Principle , 2005 .

[33]  P. Gibilisco,et al.  On the characterisation of paired monotone metrics , 2003, math/0303059.

[34]  S. Luo Wigner-Yanase skew information and uncertainty relations. , 2003, Physical review letters.

[35]  State extended uncertainty relations , 2000, quant-ph/0005086.

[36]  W. Heisenberg Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik , 1927 .