Novel design and analysis of generalized FE methods based on locally optimal spectral approximations

In this paper, the generalized finite element method (GFEM) for solving second order elliptic equations with rough coefficients is studied. New optimal local approximation spaces for GFEMs based on local eigenvalue problems involving a partition of unity are presented. These new spaces have advantages over those proposed in [I. Babuska and R. Lipton, Multiscale Model. Simul., 9 (2011), pp. 373–406]. First, in addition to a nearly exponential decay rate of the local approximation errors with respect to the dimensions of the local spaces, the rate of convergence with respect to the size of the oversampling region is also established. Second, the theoretical results hold for problems with mixed boundary conditions defined on general Lipschitz domains. Finally, an efficient and easy-to-implement technique for generating the discrete A-harmonic spaces is proposed which relies on solving an eigenvalue problem associated with the Dirichlet-to-Neumann operator, leading to a substantial reduction in computational cost. Numerical experiments are presented to support the theoretical analysis and to confirm the effectiveness of the new method.

[1]  I. Babuska,et al.  The Partition of Unity Method , 1997 .

[2]  Todd Arbogast,et al.  Subgrid Upscaling and Mixed Multiscale Finite Elements , 2006, SIAM J. Numer. Anal..

[3]  Robert Scheichl,et al.  High-performance dune modules for solving large-scale, strongly anisotropic elliptic problems with applications to aerospace composites , 2020, Comput. Phys. Commun..

[4]  Zhiming Chen,et al.  A mixed multiscale finite element method for elliptic problems with oscillating coefficients , 2003, Math. Comput..

[5]  Daniel Peterseim,et al.  Oversampling for the Multiscale Finite Element Method , 2012, Multiscale Model. Simul..

[6]  Daniel Peterseim,et al.  Localization of elliptic multiscale problems , 2011, Math. Comput..

[7]  Ivo Babuška,et al.  Machine Computation Using the Exponentially Convergent Multiscale Spectral Generalized Finite Element Method , 2014 .

[8]  Gorjan Alagic,et al.  #p , 2019, Quantum information & computation.

[9]  H. Owhadi,et al.  Polyharmonic homogenization, rough polyharmonic splines and sparse super-localization , 2012, 1212.0812.

[10]  Thomas Y. Hou,et al.  Exponential Convergence for Multiscale Linear Elliptic PDEs via Adaptive Edge Basis Functions , 2021, Multiscale Modeling & Simulation.

[11]  Houman Owhadi,et al.  Localized Bases for Finite-Dimensional Homogenization Approximations with Nonseparated Scales and High Contrast , 2010, Multiscale Model. Simul..

[12]  Yalchin Efendiev,et al.  Mixed Generalized Multiscale Finite Element Methods and Applications , 2014, Multiscale Model. Simul..

[13]  Frédéric Nataf,et al.  Analysis of a Two-level Schwarz Method with Coarse Spaces Based on Local Dirichlet-to-Neumann Maps , 2012, Comput. Methods Appl. Math..

[14]  Yalchin Efendiev,et al.  Generalized multiscale finite element methods (GMsFEM) , 2013, J. Comput. Phys..

[15]  Thomas Y. Hou,et al.  A Multiscale Finite Element Method for Elliptic Problems in Composite Materials and Porous Media , 1997 .

[16]  E Weinan,et al.  Heterogeneous multiscale methods: A review , 2007 .

[17]  Robert Lipton,et al.  Optimal Local Approximation Spaces for Generalized Finite Element Methods with Application to Multiscale Problems , 2010, Multiscale Model. Simul..

[18]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[19]  E. Weinan,et al.  Analysis of the heterogeneous multiscale method for elliptic homogenization problems , 2004 .

[20]  Yalchin Efendiev,et al.  Multiscale Finite Element Methods: Theory and Applications , 2009 .

[21]  Yalchin Efendiev,et al.  Generalized Multiscale Finite Element Methods. Oversampling Strategies , 2013, 1304.4888.

[22]  Thomas Y. Hou,et al.  Optimal Local Multi-scale Basis Functions for Linear Elliptic Equations with Rough Coefficient , 2015, 1508.00346.

[23]  Ivo Babuska,et al.  Multiscale-Spectral GFEM and Optimal Oversampling , 2019, ArXiv.

[24]  Frédéric Nataf,et al.  Spillane, N. and Dolean Maini, Victorita and Hauret, P. and Nataf, F. and Pechstein, C. and Scheichl, R. (2013) Abstract robust coarse spaces for systems of PDEs via generalized eigenproblems in the overlaps , 2018 .

[25]  Patrick Henning,et al.  Localized Orthogonal Decomposition Techniques for Boundary Value Problems , 2013, SIAM J. Sci. Comput..

[26]  Thomas Y. Hou,et al.  Convergence of a multiscale finite element method for elliptic problems with rapidly oscillating coefficients , 1999, Math. Comput..

[27]  A. Pinkus n-Widths in Approximation Theory , 1985 .