Grain Boundary Diffusion Dominated Mixing and Solid State Reactions in Magnetic Thin Films

[1]  D. Beke,et al.  Phase transformations in Pt/Fe bilayers during post annealing probed by resistometry , 2019, Journal of physics. Condensed matter : an Institute of Physics journal.

[2]  D. Beke,et al.  Low-temperature formation of the FePt phase in the presence of an intermediate Au layer in Pt /Au /Fe thin films , 2016 .

[3]  D. Beke,et al.  Diffusion and solid state reactions in Fe/Ag/Pt and FePt/Ag thin-film systems , 2015 .

[4]  D. Beke,et al.  Grain boundary diffusion induced reaction layer formation in Fe/Pt thin films , 2014 .

[5]  S. Iwata,et al.  Effect of Ag addition to L10 FePt and L10 FePd films grown by molecular beam epitaxy , 2014 .

[6]  S. Pisana,et al.  L10 FePtX–Y media for heat‐assisted magnetic recording , 2013 .

[7]  D. Beke,et al.  Kinetic pathways of diffusion and solid-state reactions in nanostructured thin films , 2013 .

[8]  C. Lai,et al.  Tuning magnetic anisotropy in (001) oriented L10 (Fe1−xCux)55Pt45 films , 2013, 1303.5208.

[9]  N. Jöhrmann,et al.  FePtCu alloy thin films: Morphology, L10 chemical ordering, and perpendicular magnetic anisotropy , 2012 .

[10]  N. Boudet,et al.  Anomalous x-ray diffraction measurements of long-range order in (001)-texturedL10FePtCu thin films , 2012 .

[11]  O. Hellwig,et al.  L10 FePtCu bit patterned media , 2012, Nanotechnology.

[12]  O. Hellwig,et al.  L10 FePt based exchange coupled composite bit patterned films , 2011 .

[13]  B. Stipe,et al.  L10-ordered FePtAg–C granular thin film for thermally assisted magnetic recording media (invited) , 2011 .

[14]  E. Rabkin,et al.  Theory of the Kirkendall effect during grain boundary interdiffusion , 2011 .

[15]  D. Goll,et al.  Temperature dependence of the magnetic properties of L10-FePt nanostructures and films , 2010 .

[16]  W. Fei,et al.  Structure and magnetic properties of magnetron-sputtered [(Fe/Pt/Fe)/Au]n multilayer films , 2010 .

[17]  D. Makarov,et al.  Perpendicular FePt-based exchange-coupled composite media , 2010 .

[18]  Kumar Srinivasan,et al.  Recording media research for future hard disk drives , 2009 .

[19]  J. Teng,et al.  Magnetic properties and microstructure of FePt/Au multilayers with high perpendicular magnetocrystalline anisotropy , 2008 .

[20]  Y. Yao,et al.  Magnetization reversal and microstructure of FePt–Ag (001) particulate thin films for perpendicular magnetic recording media , 2008 .

[21]  J. Teng,et al.  Improvement of magnetic property of L10‐FePt film by FePt∕Au multilayer structure , 2008 .

[22]  L. Schultz,et al.  Temperature dependence of FePt thin film growth on MgO(100) , 2007 .

[23]  C. You,et al.  Particulate structure of FePt thin films enhanced by Au and Ag alloying , 2006 .

[24]  Gábor Opposits,et al.  Diffusion-induced stresses and their relaxation , 2004 .

[25]  Koki Takanashi,et al.  Coercivity exceeding 100 kOe in epitaxially grown FePt sputtered films , 2004 .

[26]  David J. Sellmyer,et al.  Highly oriented nonepitaxially grown L10 FePt films , 2003 .

[27]  T. Kai,et al.  Magnetic and electronic structures of FePtCu ternary ordered alloy , 2004 .

[28]  David E. Laughlin,et al.  L–10 ordering and microstructure of FePt thin films with Cu, Ag, and Au additive , 2002 .

[29]  Akira Kikitsu,et al.  Reduction of ordering temperature of an FePt-ordered alloy by addition of Cu , 2002 .

[30]  Yu-Nu Hsu,et al.  Effects of Ag underlayers on the microstructure and magnetic properties of epitaxial FePt thin films , 2001 .

[31]  O. Kitakami,et al.  Low-temperature ordering of L10–CoPt thin films promoted by Sn, Pb, Sb, and Bi additives , 2001 .

[32]  S. Okamoto,et al.  Ordering and orientation of CoPt/SiO2 granular films with additive Ag , 2000 .

[33]  Michael F. Toney,et al.  Control of the axis of chemical ordering and magnetic anisotropy in epitaxial FePt films , 1996 .

[34]  E. Rabkin,et al.  Diffusion-induced grain boundary phenomena in metals and oxide ceramics , 1995 .

[35]  D. Yoon Theories and observations of chemically induced interface migration , 1995 .

[36]  C. Handwerker,et al.  The Potential Role of Diffusion-Induced Grain-Boundary Migration in Extended Life Prediction , 1992 .

[37]  G.Brian Stephenson,et al.  Deformation during interdiffusion , 1988 .

[38]  J. Cahn,et al.  Microstructural Control through Diffusion-Induced Grain Boundary Migration , 1987 .

[39]  A. H. King,et al.  Diffusion induced grain boundary migration , 1987 .

[40]  C. Grovenor,et al.  CHEMICAL EFFECTS ON GRAIN BOUNDARY MIGRATION IN Si AND Ge. , 1986 .

[41]  K. Tu Interdiffusion in Thin Films , 1984 .

[42]  P. Shewmon Diffusion driven grain boundary migration , 1981 .

[43]  J. Cahn,et al.  Mechanism for diffusion induced grain boundary migration , 1981 .

[44]  A. Beers,et al.  Recrystallization and interdiffusion in thin bimetallic films , 1980 .

[45]  A. Beers,et al.  Dislocation wall formation during interdiffusion in thin bimetallic films , 1978 .

[46]  M. Hillert,et al.  Chemically induced grain boundary migration , 1978 .

[47]  King-Ning Tu,et al.  Kinetics of thin-film reactions between Pb and the AgPd alloy , 1977 .

[48]  F. D. Broeder Interface reaction and a special form of grain boundary diffusion in the Cr-W system , 1972 .