A CMOS multichannel electrical stimulation prototype system

SUMMARY We developed an inductively powered integrated electronic prosthesis, allowing for the trade-offs among implant functionality, circuit complexity, power consumption, hardware cost, and integrity of data recovery, for a multichannel microstimulation circuitry. The proposed prosthesis features energy efficiency and is capable of up to 40 scan/s with 240 stimulus channels in mode I and three times resolution at the same scan rate in mode II under a carrier frequency of 2 MHz. In order to satisfy future upgrade demands, the prototype has been constructed with a 16-channel-based stimulation scheme so that the spatial resolution of the design can be extended toward various experimental purposes. The circuit techniques used in the system are detailed. Results from fabricated chips using a 0.18-µm CMOS process are given as proof of concept. Copyright © 2011 John Wiley & Sons, Ltd.

[1]  Nigel H. Lovell,et al.  CMOS neurostimulation ASIC with 100 channels, scaleable output, and bidirectional radio-frequency telemetry , 2001, IEEE Transactions on Biomedical Engineering.

[2]  Kaushik Roy,et al.  QSERL: quasi-static energy recovery logic , 2001 .

[3]  Vojin G. Oklobdzija,et al.  Clocked CMOS adiabatic logic with integrated single-phase power-clock supply , 2000, IEEE Trans. Very Large Scale Integr. Syst..

[4]  S. Kelly,et al.  Methods and perceptual thresholds for short-term electrical stimulation of human retina with microelectrode arrays. , 2003, Investigative ophthalmology & visual science.

[5]  A. Y. Chow,et al.  Implantation of silicon chip microphotodiode arrays into the cat subretinal space , 2001, IEEE Transactions on Neural Systems and Rehabilitation Engineering.

[6]  Nigel H. Lovell,et al.  Simulating Prosthetic Vision , 2005 .

[7]  A. Milam,et al.  Preservation of the inner retina in retinitis pigmentosa. A morphometric analysis. , 1997, Archives of ophthalmology.

[8]  Mohamad Sawan,et al.  A Highly Flexible System for Microstimulation of the Visual Cortex: Design and Implementation , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[9]  Shuenn-Yuh Lee,et al.  An implantable wireless bidirectional communication microstimulator for neuromuscular stimulation , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  Lee Johnson,et al.  A Retinal Prosthesis Technology Based on CMOS Microelectronics and Microwire Glass Electrodes , 2007, IEEE Transactions on Biomedical Circuits and Systems.

[11]  K Arabi,et al.  Electronic design of a multichannel programmable implant for neuromuscular electrical stimulation. , 1999, IEEE transactions on rehabilitation engineering : a publication of the IEEE Engineering in Medicine and Biology Society.

[12]  Daniel R. Merrill,et al.  Electrical stimulation of excitable tissue: design of efficacious and safe protocols , 2005, Journal of Neuroscience Methods.

[13]  Edwin Hsing-Mean Sha,et al.  A novel multiplexer-based low-power full adder , 2004, IEEE Transactions on Circuits and Systems II: Express Briefs.

[14]  J. Weiland,et al.  Towards a Modular 32 x 32 Pixel Stimulator for Retinal Prosthesis , 2006, 2006 IEEE/NLM Life Science Systems and Applications Workshop.

[15]  G. Fishman,et al.  Visual loss and foveal lesions in Usher's syndrome. , 1979, The British journal of ophthalmology.

[16]  Gert Cauwenberghs,et al.  Power harvesting and telemetry in CMOS for implanted devices , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[17]  Deog-Kyoon Jeong,et al.  An efficient charge recovery logic circuit , 1996, IEEE J. Solid State Circuits.

[18]  J. Weiland,et al.  Pattern electrical stimulation of the human retina , 1999, Vision Research.

[19]  Chua-Chin Wang,et al.  A multiparameter implantable microstimulator SOC , 2005, IEEE Transactions on Very Large Scale Integration (VLSI) Systems.

[20]  P. Loizou Introduction to cochlear implants. , 1999, IEEE engineering in medicine and biology magazine : the quarterly magazine of the Engineering in Medicine & Biology Society.

[21]  W. Liu,et al.  A neuro-stimulus chip with telemetry unit for retinal prosthetic device , 2000, IEEE Journal of Solid-State Circuits.

[22]  M. Humayun,et al.  MORPHOMETRIC ANALYSIS OF THE MACULA IN EYES WITH GEOGRAPHIC ATROPHY DUE TO AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[23]  M. Okandan,et al.  A novel method of fabricating integrated FETs for MEMS applications , 2003, Journal of Microelectromechanical Systems.

[24]  Vojin G. Oklobdzija,et al.  Pass-transistor adiabatic logic using single power-clock supply , 1997 .

[25]  A. Milam,et al.  Morphometric analysis of the extramacular retina from postmortem eyes with retinitis pigmentosa. , 1999, Investigative ophthalmology & visual science.

[26]  L P AGARWAL,et al.  RETINITIS PIGMENTOSA* , 1963, The British journal of ophthalmology.

[27]  Kaushik Roy,et al.  Robust subthreshold logic for ultra-low power operation , 2001, IEEE Trans. Very Large Scale Integr. Syst..

[28]  John Stewart Denker,et al.  Adiabatic dynamic logic , 1995 .

[29]  M.S. Humayun,et al.  A biomimetic retinal stimulating array , 2005, IEEE Engineering in Medicine and Biology Magazine.

[30]  J. Weiland,et al.  Retinal prosthesis for the blind. , 2002, Survey of ophthalmology.

[31]  Wentai Liu,et al.  Design and analysis of an adaptive transcutaneous power telemetry for biomedical implants , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[32]  Thomas Stieglitz,et al.  An Optically Powered Single-Channel Stimulation Implant as Test System for Chronic Biocompatibility and Biostability of Miniaturized Retinal Vision Prostheses , 2007, IEEE Transactions on Biomedical Engineering.

[33]  Richard A. Normann,et al.  Simulation of a phosphene-based visual field: Visual acuity in a pixelized vision system , 2006, Annals of Biomedical Engineering.

[34]  A. Y. Chow,et al.  The artificial silicon retina microchip for the treatment of vision loss from retinitis pigmentosa. , 2004, Archives of ophthalmology.

[35]  Chua-Chin Wang,et al.  An implantable bi-directional wireless transmission system for transcutaneous biological signal recording , 2005, Physiological measurement.

[36]  Tim Collins,et al.  Secure contactless smartcard ASIC with DPA protection , 2001 .

[37]  Maysam Ghovanloo,et al.  A wideband frequency-shift keying wireless link for inductively powered biomedical implants , 2004, IEEE Transactions on Circuits and Systems I: Regular Papers.

[38]  L. Hyman,et al.  Epidemiology of eye disease in the elderly , 1987, Eye.

[39]  Pedro Tomás,et al.  Visual neuroprosthesis: a non invasive system for stimulating the cortex , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[40]  R. Shepherd,et al.  Electrical stimulation of the auditory nerve: direct current measurement in vivo , 1999, IEEE Transactions on Biomedical Engineering.

[41]  Mohamad Sawan,et al.  A fully integrated low-power BPSK demodulator for implantable medical devices , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[42]  T. Furumiya,et al.  Silicon LSI-based smart stimulators for retinal prosthesis , 2006, IEEE Engineering in Medicine and Biology Magazine.

[43]  M. Sivaprakasam,et al.  Implantable biomimetic microelectronic systems design , 2005, IEEE Engineering in Medicine and Biology Magazine.

[44]  J. Weiland,et al.  A variable range bi-phasic current stimulus driver circuitry for an implantable retinal prosthetic device , 2005, IEEE Journal of Solid-State Circuits.

[45]  M. Humayun,et al.  MORPHOMETRIC ANALYSIS OF THE MACULA IN EYES WITH DISCIFORM AGE-RELATED MACULAR DEGENERATION , 2002, Retina.

[46]  Sonia H Yoo,et al.  Age-related macular degeneration: etiology, pathogenesis, and therapeutic strategies. , 2003, Survey of ophthalmology.