Daily variations in delivered doses in patients treated with radiotherapy for localized prostate cancer.

PURPOSE The aim of this work was to study the variations in delivered doses to the prostate, rectum, and bladder during a full course of image-guided external beam radiotherapy. METHODS AND MATERIALS Ten patients with localized prostate cancer were treated with helical tomotherapy to 78 Gy at 2 Gy per fraction in 39 fractions. Daily target localization was performed using intraprostatic fiducials and daily megavoltage pelvic computed tomography (CT) scans, resulting in a total of 390 CT scans. The prostate, rectum, and bladder were manually contoured on each CT by a single physician. Daily dosimetric analysis was performed with dose recalculation. The study endpoints were D95 (dose to 95% of the prostate), rV2 (absolute rectal volume receiving 2 Gy), and bV2 (absolute bladder volume receiving 2 Gy). RESULTS For the entire cohort, the average D95 (+/-SD) was 2.02 +/- 0.04 Gy (range, 1.79-2.20 Gy). The average rV2 (+/-SD) was 7.0 +/- 8.1 cc (range, 0.1-67.3 cc). The average bV2 (+/-SD) was 8.7 +/- 6.8 cc (range, 0.3-36.8 cc). Unlike doses for the prostate, there was significant daily variation in rectal and bladder doses, mostly because of variations in volume and shape of these organs. CONCLUSION Large variations in delivered doses to the rectum and bladder can be documented with daily megavoltage CT scans. Image guidance for the targeting of the prostate, even with intraprostatic fiducials, does not take into account the variation in actual rectal and bladder doses. The clinical impact of techniques that take into account such dosimetric parameters in daily patient set-ups should be investigated.

[1]  K. Lam,et al.  Retrospective analysis of prostate cancer patients with implanted gold markers using off-line and adaptive therapy protocols. , 2005, International journal of radiation oncology, biology, physics.

[2]  Patrick A Kupelian,et al.  Intraprostatic fiducials for localization of the prostate gland: monitoring intermarker distances during radiation therapy to test for marker stability. , 2005, International journal of radiation oncology, biology, physics.

[3]  J C Stroom,et al.  Detection of internal organ movement in prostate cancer patients using portal images. , 2000, Medical physics.

[4]  M van Herk,et al.  Quantification of organ motion during conformal radiotherapy of the prostate by three dimensional image registration. , 1995, International journal of radiation oncology, biology, physics.

[5]  J. Crook,et al.  Prostate motion during standard radiotherapy as assessed by fiducial markers. , 1995, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[6]  Benjamin Movsas,et al.  Measurement of intrafractional prostate motion using magnetic resonance imaging. , 2002, International journal of radiation oncology, biology, physics.

[7]  C. Pelizzari,et al.  Evaluation of changes in the size and location of the prostate, seminal vesicles, bladder, and rectum during a course of external beam radiation therapy. , 1995, International journal of radiation oncology, biology, physics.

[8]  David A Jaffray,et al.  On-line aSi portal imaging of implanted fiducial markers for the reduction of interfraction error during conformal radiotherapy of prostate carcinoma. , 2004, International journal of radiation oncology, biology, physics.

[9]  K. Langen,et al.  Organ motion and its management. , 2001, International journal of radiation oncology, biology, physics.

[10]  T E Schultheiss,et al.  Ultrasound-based stereotactic guidance in prostate cancer--quantification of organ motion and set-up errors in external beam radiation therapy. , 2000, Computer aided surgery : official journal of the International Society for Computer Aided Surgery.

[11]  D Yan,et al.  An off-line strategy for constructing a patient-specific planning target volume in adaptive treatment process for prostate cancer. , 2000, International journal of radiation oncology, biology, physics.

[12]  G H Olivera,et al.  The use of megavoltage CT (MVCT) images for dose recomputations , 2005, Physics in medicine and biology.

[13]  J Alfred Witjes,et al.  The effect of an endorectal balloon and off-line correction on the interfraction systematic and random prostate position variations: a comparative study. , 2005, International journal of radiation oncology, biology, physics.

[14]  J C Stroom,et al.  Internal organ motion in prostate cancer patients treated in prone and supine treatment position. , 1999, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[15]  John Wong,et al.  Assessment of residual error for online cone-beam CT-guided treatment of prostate cancer patients. , 2004, International journal of radiation oncology, biology, physics.

[16]  T Haycocks,et al.  Positioning errors and prostate motion during conformal prostate radiotherapy using on-line isocentre set-up verification and implanted prostate markers. , 2001, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[17]  Patrick A Kupelian,et al.  Initial experience with megavoltage (MV) CT guidance for daily prostate alignments. , 2005, International journal of radiation oncology, biology, physics.

[18]  He Wang,et al.  Use of deformed intensity distributions for on-line modification of image-guided IMRT to account for interfractional anatomic changes. , 2005, International journal of radiation oncology, biology, physics.

[19]  Yoshihiro Takai,et al.  Evaluation of inter- and intrafraction organ motion during intensity modulated radiation therapy (IMRT) for localized prostate cancer measured by a newly developed on-board image-guided system. , 2005, Radiation medicine.

[20]  E. B. Butler,et al.  The Use of Rectal Balloon During the Delivery of Intensity Modulated Radiotherapy (IMRT) for Prostate Cancer: More Than Just a Prostate Gland Immobilization Device? , 2002, Cancer Journal.

[21]  Jean-François Aubry,et al.  Measurements of intrafraction motion and interfraction and intrafraction rotation of prostate by three-dimensional analysis of daily portal imaging with radiopaque markers. , 2004, International journal of radiation oncology, biology, physics.

[22]  Lei Dong,et al.  Intrafraction prostate motion during IMRT for prostate cancer. , 2001, International journal of radiation oncology, biology, physics.

[23]  Jan J W Lagendijk,et al.  Clinical feasibility study for the use of implanted gold seeds in the prostate as reliable positioning markers during megavoltage irradiation. , 2003, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.