Solar and Heliospheric Observatory Observations of a Helical Coronal Mass Ejection

The EUV Imaging Telescope (EIT), Large Angle Spectrometric Coronagraph (LASCO), and Ultraviolet Coronagraph Spectrometer (UVCS) instruments aboard the SOHO satellite observed a prominence eruption (coronal mass ejection) on 1997 December 12. Ejected plasma moved at about 130 km s-1 in the plane of the sky and showed Doppler shifts between -350 and +30 km s-1. The eruption appeared as a strongly curved arch in EIT images low in the corona. Emission in ions ranging from Si III to O VI in the UVCS spectra indicates a temperature range between 104.5 and 105.5 K. The morphology of the bright emission regions seen by all three instruments suggests several strands of a helical structure of moderate pitch angle. A reasonable fit to the spatial structure and the velocity evolution measured by UVCS is provided by a left-handed helix untwisting at a rate of about 9 × 10-4 radians s-1.

[1]  M. Karovska,et al.  Comparison of Two Coronal Mass Ejections Observed by EIT and LASCO with a Model of an Erupting Magnetic Flux Rope , 1999 .

[2]  A. Modigliani,et al.  Ultraviolet and Optical Observations of a Coronal Transient with SOHO , 1999 .

[3]  S. Antiochos,et al.  A Model for Solar Coronal Mass Ejections , 1998, astro-ph/9807220.

[4]  G. Naletto,et al.  Physical Structure of a Coronal Streamer in the Closed-Field Region as Observed from UVCS/SOHO and SXT/Yohkoh , 1998 .

[5]  M. L. Rilee,et al.  The Neon-to-Magnesium Abundance Ratio as a Tracer of the Source Region of Prominence Material , 1998 .

[6]  B. Low,et al.  A Time-dependent Three-dimensional Magnetohydrodynamic Model of the Coronal Mass Ejection , 1998 .

[7]  S. Fineschi,et al.  Ultraviolet Coronagraph Spectrometer Observation of the 1996 December 23 Coronal Mass Ejection , 1997 .

[8]  S. Fineschi,et al.  Velocity Fields in the Solar Corona during Mass Ejections as observed with UVCS-SOHO , 1997 .

[9]  A. Poland,et al.  Eruptive prominence and associated CME observed with SUMER, CDS and LASCO (SOHO) , 1997 .

[10]  P. Nicolosi,et al.  Composition of Coronal Streamers from the SOHO Ultraviolet Coronagraph Spectrometer , 1997 .

[11]  Jo Ann Joselyn,et al.  Coronal Mass Ejections: Crooker/Coronal Mass Ejections , 1997 .

[12]  James Chen Theory of prominence eruption and propagation: Interplanetary consequences , 1996 .

[13]  B. Low Solar activity and the corona , 1996 .

[14]  D. Rust,et al.  Interplanetary magnetic clouds, helicity conservation, and current‐core flux‐ropes , 1996 .

[15]  W. Neupert,et al.  EIT: Extreme-ultraviolet Imaging Telescope for the SOHO mission , 1995 .

[16]  B. Low Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections, and magnetic helicity* , 1994 .

[17]  J. Gosling The solar flare myth , 1993 .

[18]  Griffin,et al.  Low-energy total and differential cross sections for the electron-impact excitation of Si2+ and Ar6+ , 1993, Physical review. A, Atomic, molecular, and optical physics.

[19]  P. Lamy,et al.  The Large Angle Spectroscopic Coronagraph (LASCO): Visible light coronal imaging and spectroscopy , 1992 .

[20]  U. Feldman Elemental abundances in the upper solar atmosphere , 1992 .

[21]  B. Jackson,et al.  Eruptive Solar Flares , 1992 .

[22]  T. Scholz,et al.  Collisional rates and cooling within atomic hydrogen plasmas , 1991 .

[23]  Petrus C. H. Martens,et al.  Formation and eruption of solar prominences , 1989 .

[24]  P. Sturrock The role of eruption in solar flares , 1989 .

[25]  E. Schmahl,et al.  Evidence for continuum absorption above the quiet sun transition region , 1979 .

[26]  Barham W. Smith,et al.  Soft X-ray spectrum of a hot plasma. , 1977 .

[27]  J. Malville,et al.  The eruptive prominence of June 8, 1974 , 1976 .

[28]  R. MacQueen,et al.  Mass ejections from the Sun: A view from Skylab , 1974 .