Electrically Controlled Nonlinear Generation of Light with Plasmonics

A plasmonic structure is used to electrically produce frequency-doubled light. Plasmonics provides a route to develop ultracompact optical devices on a chip by using extreme light concentration and the ability to perform simultaneous electrical and optical functions. These properties also make plasmonics an ideal candidate for dynamically controlling nonlinear optical interactions at the nanoscale. We demonstrate electrically tunable harmonic generation of light from a plasmonic nanocavity filled with a nonlinear medium. The metals that define the cavity also serve as electrodes that can generate high direct current electric fields across the nonlinear material. A fundamental wave at 1.56 micrometers was frequency doubled and modulated in intensity by applying a moderate external voltage to the electrodes, yielding a voltage-dependent nonlinear generation with a normalized magnitude of ~7% per volt.

[1]  Steve Blair,et al.  Third-harmonic generation from arrays of sub-wavelength metal apertures. , 2009, Optics express.

[2]  E. Eliel,et al.  Plasmon-assisted two-slit transmission: Young's experiment revisited. , 2005, Physical review letters.

[3]  In-Yong Park,et al.  High-harmonic generation by resonant plasmon field enhancement , 2008, Nature.

[4]  S Enoch,et al.  Strong modification of the nonlinear optical response of metallic subwavelength hole arrays. , 2006, Physical review letters.

[5]  Harry A. Atwater The promise of plasmonics. , 2007 .

[6]  M. Lipson,et al.  Broad-band optical parametric gain on a silicon photonic chip , 2006, Nature.

[7]  J. Leuthold,et al.  Nonlinear silicon photonics , 2010 .

[8]  Stefan Linden,et al.  Experiments on second- and third-harmonic generation from magnetic metamaterials. , 2008, Optics express.

[9]  C. Peters,et al.  Generation of optical harmonics , 1961 .

[10]  Z. Chen,et al.  Coherent backscattering of optical second-harmonic generation with long-range surface plasmons. , 1983, Optics letters.

[11]  Seth R. Marder,et al.  Experimental investigations of organic molecular nonlinear optical polarizabilities. 1. Methods and results on benzene and stilbene derivatives , 1991 .

[12]  R. K. Chang,et al.  Nonlinear Electroreflectance in Silicon and Silver , 1967 .

[13]  Marlan O Scully,et al.  Large enhancement of nonlinear optical phenomena by plasmonic nanocavity gratings. , 2010, Nano letters.

[14]  C. Bethea,et al.  Molecular hyperpolarizabilities determined from conjugated and nonconjugated organic liquids , 1974 .

[15]  M. Wegener,et al.  Second-Harmonic Generation from Magnetic Metamaterials , 2006, Science.

[16]  L. Novotný,et al.  Nonlinear plasmonics with gold nanoparticle antennas , 2009 .

[17]  Steve Blair,et al.  Second-harmonic generation from an array of sub-wavelength metal apertures , 2005 .

[18]  J. Misewich,et al.  High‐speed electrical sampling using optical second‐harmonic generation , 1996 .

[19]  M. Gallazzi,et al.  Enhancement of PMMA nonlinear optical properties by means of a quinoid molecule , 2004 .

[20]  A. Fedyanin,et al.  Optical second-harmonic generation induced by a dc electric field at the Si-SiO(2) interface. , 1994, Optics letters.

[21]  J. Heflin,et al.  Plasmon-enhanced second-harmonic generation from ionic self-assembled multilayer films. , 2007, Nano letters.

[22]  L. Novotný,et al.  Nonlinear Dark-field Microscopy , 2022 .

[23]  A. A. Fedyanin,et al.  D.c. electric field induced second-harmonic generation spectroscopy of the Si(001)–SiO2 interface: separation of the bulk and surface non-linear contributions , 1997 .

[24]  Charles T. Rogers,et al.  Optical surface second harmonic measurements of isotropic thin-film metals: Gold, silver, copper, aluminum, and tantalum , 2004 .

[25]  L M Loew,et al.  Probing membrane potential with nonlinear optics. , 1993, Biophysical journal.

[26]  O. Martin,et al.  Resonant Optical Antennas , 2005, Science.

[27]  Shanhui Fan,et al.  Elements for Plasmonic Nanocircuits with Three‐Dimensional Slot Waveguides , 2010, Advanced materials.

[28]  Lukas Novotny,et al.  Optical frequency mixing at coupled gold nanoparticles. , 2007, Physical review letters.

[29]  Thomas W. Ebbesen,et al.  Surface-plasmon circuitry , 2008 .

[30]  T. Ebbesen,et al.  Enhanced second-harmonic generation from individual metallic nanoapertures. , 2010, Optics letters.

[31]  Ajay Nahata,et al.  Enhanced nonlinear optical conversion from a periodically nanostructured metal film. , 2003, Optics letters.

[32]  W. Cai,et al.  Plasmonics for extreme light concentration and manipulation. , 2010, Nature materials.

[33]  Mark L. Brongersma,et al.  Plasmonics: the next chip-scale technology , 2006 .

[34]  Sarah M. Buck,et al.  Molecular Chemical Structure on Poly(methyl methacrylate) (PMMA) Surface Studied by Sum Frequency Generation (SFG) Vibrational Spectroscopy , 2001 .

[35]  Vladimir M Shalaev,et al.  The Case for Plasmonics , 2010, Science.

[36]  D. Kane,et al.  Electric-field-induced second-harmonic generation in GaN devices. , 2001, Optics letters.

[37]  Mark L Brongersma,et al.  Spectral properties of plasmonic resonator antennas. , 2008, Optics express.

[38]  Mark L Brongersma,et al.  Surface plasmon polariton analogue to Young's double-slit experiment. , 2007, Nature nanotechnology.

[39]  H. Kurz,et al.  Optical second-harmonic generation as a probe of electric-field-induced perturbation of centrosymmetric media. , 1995, Optics letters.

[40]  D. Reid,et al.  Optical probing of a silicon integrated circuit using electric-field-induced second-harmonic generation , 2006 .

[41]  W. Cai,et al.  Compact, high-speed and power-efficient electrooptic plasmonic modulators. , 2009, Nano letters.

[42]  R. W. Terhune,et al.  Optical Harmonic Generation in Calcite , 1962 .

[43]  Peter B Catrysse,et al.  Geometries and materials for subwavelength surface plasmon modes. , 2004, Journal of the Optical Society of America. A, Optics, image science, and vision.

[44]  Kevin J. Malloy,et al.  Second harmonic generation from a nanopatterned isotropic nonlinear material , 2006 .

[45]  L M Loew,et al.  High-resolution nonlinear optical imaging of live cells by second harmonic generation. , 1999, Biophysical journal.

[46]  O. Ostroverkhova,et al.  Electric field-induced second harmonic generation studies of chromophore orientational dynamics in photorefractive polymers , 2002 .

[47]  S. Thompson,et al.  Moore's law: the future of Si microelectronics , 2006 .