Systems biology derived source-sink mechanism of BMP gradient formation

A morphogen gradient of Bone Morphogenetic Protein (BMP) signaling patterns the dorsoventral embryonic axis of vertebrates and invertebrates. The prevailing view in vertebrates for BMP gradient formation is through a counter-gradient of BMP antagonists, often along with ligand shuttling to generate peak signaling levels. To delineate the mechanism in zebrafish, we precisely quantified the BMP activity gradient in wild-type and mutant embryos and combined these data with a mathematical model-based computational screen to test hypotheses for gradient formation. Our analysis ruled out a BMP shuttling mechanism and a bmp transcriptionally-informed gradient mechanism. Surprisingly, rather than supporting a counter-gradient mechanism, our analyses support a fourth model, a source-sink mechanism, which relies on a restricted BMP antagonist distribution acting as a sink that drives BMP flux dorsally and gradient formation. We measured Bmp2 diffusion and found that it supports the source-sink model, suggesting a new mechanism to shape BMP gradients during development.

[1]  Paul François,et al.  Single-cell-resolution imaging of the impact of Notch signaling and mitosis on segmentation clock dynamics. , 2012, Developmental cell.

[2]  L. Zon,et al.  The molecular nature of zebrafish swirl: BMP2 function is essential during early dorsoventral patterning. , 1997, Development.

[3]  Qing Nie,et al.  Formation of the BMP activity gradient in the Drosophila embryo. , 2005, Developmental cell.

[4]  S. Fisher,et al.  Differential regulation of chordin expression domains in mutant zebrafish. , 1997, Developmental biology.

[5]  S. Shvartsman,et al.  Temporal dynamics, spatial range, and transcriptional interpretation of the Dorsal morphogen gradient. , 2012, Current opinion in genetics & development.

[6]  E. D. De Robertis,et al.  Chordin is required for the Spemann organizer transplantation phenomenon in Xenopus embryos. , 2003, Developmental cell.

[7]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[8]  M. Fürthauer,et al.  Noggin1 and Follistatin-like2 function redundantly to Chordin to antagonize BMP activity. , 2006, Developmental biology.

[9]  D A Kane,et al.  dino and mercedes, two genes regulating dorsal development in the zebrafish embryo. , 1996, Development.

[10]  J. Gerhart Inversion of the chordate body axis: are there alternatives? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[11]  Dorsoventral axis inversion , 1995 .

[12]  D. Brazil,et al.  BMP signalling: agony and antagony in the family. , 2015, Trends in cell biology.

[13]  Osamu Shimmi,et al.  Facilitated Transport of a Dpp/Scw Heterodimer by Sog/Tsg Leads to Robust Patterning of the Drosophila Blastoderm Embryo , 2005, Cell.

[14]  Qing Nie,et al.  Computational analysis of BMP gradients in dorsal-ventral patterning of the zebrafish embryo. , 2007, Journal of theoretical biology.

[15]  M. Ekker,et al.  Ventral and lateral regions of the zebrafish gastrula, including the neural crest progenitors, are established by a bmp2b/swirl pathway of genes. , 1998, Developmental biology.

[16]  J. Plouhinec,et al.  Crossveinless-2 is required for the relocalization of Chordin protein within the vertebral field in mouse embryos. , 2010, Developmental biology.

[17]  M. Khokha,et al.  Depletion of three BMP antagonists from Spemann's organizer leads to a catastrophic loss of dorsal structures. , 2005, Developmental cell.

[18]  M. Fürthauer,et al.  Equivalent genetic roles for bmp7/snailhouse and bmp2b/swirl in dorsoventral pattern formation. , 2000, Development.

[19]  N. Barkai,et al.  Scaling of the BMP activation gradient in Xenopus embryos , 2008, Nature.

[20]  Drew N. Robson,et al.  Supplementary Materials for Differential Diffusivity of Nodal and Lefty Underlies a Reaction-Diffusion Patterning System , 2012 .

[21]  M. Fürthauer,et al.  Fgf signalling controls the dorsoventral patterning of the zebrafish embryo , 2004, Development.

[22]  R. Dorfman,et al.  Biphasic activation of the BMP pathway patterns the Drosophila embryonic dorsal region. , 2001, Development.

[23]  Q. Nie,et al.  Dynamics and precision in retinoic acid morphogen gradients. , 2012, Current opinion in genetics & development.

[24]  Miguel Á. Carreira-Perpiñán,et al.  Non-rigid point set registration: Coherent Point Drift , 2006, NIPS.

[25]  S. Fisher,et al.  Patterning the zebrafish axial skeleton requires early chordin function , 1999, Nature Genetics.

[26]  E. D. De Robertis,et al.  BMP gradients: A paradigm for morphogen-mediated developmental patterning , 2015, Science.

[27]  Shawn C. Little,et al.  Extracellular modulation of BMP activity in patterning the dorsoventral axis. , 2006, Birth defects research. Part C, Embryo today : reviews.

[28]  Stephen C. Ekker,et al.  Twisted gastrulation is a conserved extracellular BMP antagonist , 2001, Nature.

[29]  Yoshiki Sasai,et al.  A conserved system for dorsal-ventral patterning in insects and vertebrates involving sog and chordin , 1995, Nature.

[30]  Philipp J. Keller,et al.  Reconstruction of Zebrafish Early Embryonic Development by Scanned Light Sheet Microscopy , 2008, Science.

[31]  W. Talbot,et al.  Morpholino phenocopies of the bmp2b/swirl and bmp7/snailhouse mutations , 2001, Genesis.

[32]  W. Driever,et al.  bozozok directly represses bmp2b transcription and mediates the earliest dorsoventral asymmetry of bmp2b expression in zebrafish , 2003, Development.

[33]  A. Kicheva,et al.  Precision of the Dpp gradient , 2008, Development.

[34]  B. Schölkopf,et al.  Non-rigid point set registration: Coherent Point Drift , 2007 .

[35]  Yu-Chiun Wang,et al.  Spatial bistability of Dpp–receptor interactions during Drosophila dorsal–ventral patterning , 2005, Nature.

[36]  Amedeo Caflisch,et al.  Computer-Aided Design of Thrombin Inhibitors. , 1998, News in physiological sciences : an international journal of physiology produced jointly by the International Union of Physiological Sciences and the American Physiological Society.

[37]  Leslie Dale,et al.  Cleavage of Chordin by Xolloid Metalloprotease Suggests a Role for Proteolytic Processing in the Regulation of Spemann Organizer Activity , 1997, Cell.

[38]  S. Maegawa,et al.  Chordin expression, mediated by Nodal and FGF signaling, is restricted by redundant function of two β-catenins in the zebrafish embryo , 2007, Mechanisms of Development.

[39]  T. Jowitt,et al.  Nanoscale structure of the BMP antagonist chordin supports cooperative BMP binding , 2014, Proceedings of the National Academy of Sciences.

[40]  Michael Brand,et al.  Morphogen transport , 2013, Development.

[41]  James Briscoe,et al.  Morphogen interpretation: the transcriptional logic of neural tube patterning. , 2013, Current opinion in genetics & development.

[42]  C. Bökel,et al.  Generation and interpretation of FGF morphogen gradients in vertebrates. , 2013, Current opinion in genetics & development.

[43]  J. Wrana,et al.  The Xenopus Dorsalizing Factor noggin Ventralizes Drosophila Embryos by Preventing DPP from Activating Its Receptor , 1996, Cell.

[44]  David M. Umulis,et al.  The BMP-binding protein Crossveinless 2 is a short-range, concentration-dependent, biphasic modulator of BMP signaling in Drosophila. , 2008, Developmental cell.

[45]  J. Garnett,et al.  Colours in Metal Glasses and in Metallic Films. , 1904, Proceedings of the Royal Society of London.

[46]  G. Thomsen Antagonism within and around the organizer: BMP inhibitors in vertebrate body patterning. , 1997, Trends in genetics : TIG.

[47]  M. Halpern,et al.  Maternal and zygotic activity of the zebrafish ogon locus antagonizes BMP signaling. , 1999, Developmental biology.

[48]  N. Barkai,et al.  Creating gradients by morphogen shuttling. , 2013, Trends in genetics : TIG.

[49]  D. C. Weinstein,et al.  Is Chordin a morphogen? , 2001, BioEssays : news and reviews in molecular, cellular and developmental biology.

[50]  K. Sander,et al.  Evo-devo aspects of classical and molecular data in a historical perspective. , 2004, Journal of experimental zoology. Part B, Molecular and developmental evolution.

[51]  Mingfa Li,et al.  Stepwise formation of a SMAD activity gradient during dorsal-ventral patterning of the Drosophila embryo , 2003, Development.

[52]  U. Strähle,et al.  Cleavage of the BMP-4 antagonist chordin by zebrafish tolloid. , 1997, Science.

[53]  Shawn C. Little,et al.  BMP heterodimers assemble hetero-type I receptor complexes that pattern the DV axis , 2009, Nature Cell Biology.

[54]  N. Barkai,et al.  Robustness of the BMP morphogen gradient in Drosophila embryonic patterning , 2022 .

[55]  Andriy Myronenko,et al.  Point Set Registration: Coherent Point Drift , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  E. Robertis,et al.  Regulation of ADMP and BMP2/4/7 at Opposite Embryonic Poles Generates a Self-Regulating Morphogenetic Field , 2005, Cell.

[57]  S. Maegawa,et al.  FGF signaling is required for β-catenin-mediated induction of the zebrafish organizer , 2006, Development.

[58]  J. Emery,et al.  Dorsal-ventral patterning of the Drosophila embryo depends on a putative negative growth factor encoded by the short gastrulation gene. , 1994, Genes & development.

[59]  Y. Sasai,et al.  A common plan for dorsoventral patterning in Bilateria , 1996, Nature.

[60]  M. Mullins,et al.  Temporally coordinated signals progressively pattern the anteroposterior and dorsoventral body axes. , 2015, Seminars in cell & developmental biology.

[61]  David M. Umulis,et al.  Organism-scale modeling of early Drosophila patterning via bone morphogenetic proteins. , 2010, Developmental cell.

[62]  François Lapraz,et al.  Patterning of the Dorsal-Ventral Axis in Echinoderms: Insights into the Evolution of the BMP-Chordin Signaling Network , 2009, PLoS biology.

[63]  M. Ekker,et al.  The role of tolloid/mini fin in dorsoventral pattern formation of the zebrafish embryo. , 1999, Development.

[64]  W. Driever,et al.  The role of the homeodomain protein Bozozok in zebrafish axis formation. , 2001, The International journal of developmental biology.

[65]  M. Mullins,et al.  Maternal and zygotic control of zebrafish dorsoventral axial patterning. , 2011, Annual review of genetics.

[66]  David M. Umulis,et al.  Quantitative model analysis with diverse biological data: applications in developmental pattern formation. , 2013, Methods.

[67]  Andrew P. McMahon,et al.  The zebrafish organizer requires chordino , 1997, Nature.

[68]  A. Schier,et al.  Morphogen gradients: from generation to interpretation. , 2011, Annual review of cell and developmental biology.

[69]  M. Mullins,et al.  The BMP signaling gradient patterns dorsoventral tissues in a temporally progressive manner along the anteroposterior axis. , 2008, Developmental cell.

[70]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[71]  Ken W. Y. Cho,et al.  Production of a DPP Activity Gradient in the Early Drosophila Embryo through the Opposing Actions of the SOG and TLD Proteins , 1997, Cell.

[72]  S. Ekker,et al.  Effective targeted gene ‘knockdown’ in zebrafish , 2000, Nature Genetics.

[73]  F. Crick Diffusion in Embryogenesis , 1970, Nature.

[74]  F. J. Livesey,et al.  Gradients in the brain: the control of the development of form and function in the cerebral cortex. , 2009, Cold Spring Harbor perspectives in biology.

[75]  P. J. Maughan,et al.  SNP genotyping using KASPar assays. , 2015, Methods in molecular biology.

[76]  M. Mullins,et al.  Anteroposterior and dorsoventral patterning are coordinated by an identical patterning clock , 2013, Development.

[77]  David M. Umulis,et al.  Shaping BMP morphogen gradients through enzyme-substrate interactions. , 2011, Developmental cell.

[78]  J. Hewitt,et al.  Formation of the Embryonic Organizer Is Restricted by the Competitive Influences of Fgf Signaling and the SoxB1 Transcription Factors , 2013, PloS one.

[79]  R. Harland,et al.  The Spemann Organizer Signal noggin Binds and Inactivates Bone Morphogenetic Protein 4 , 1996, Cell.

[80]  M. Gribskov,et al.  Making models match measurements: model optimization for morphogen patterning networks. , 2014, Seminars in cell & developmental biology.

[81]  Eric F. Wieschaus,et al.  The Formation of the Bicoid Morphogen Gradient Requires Protein Movement from Anteriorly Localized mRNA , 2011, PLoS biology.

[82]  M. Mullins,et al.  SnapShot: BMP Signaling in Development , 2011, Cell.

[83]  O. Shimmi,et al.  Is chordin a long-range- or short-range-acting factor? Roles for BMP1-related metalloproteases in chordin and BMP4 autofeedback loop regulation. , 2000, Developmental biology.

[84]  D. Iber,et al.  Axis Patterning by BMPs: Cnidarian Network Reveals Evolutionary Constraints , 2015, Cell reports.

[85]  Y. Sasai,et al.  Ectodermal patterning in vertebrate embryos. , 1997, Developmental biology.

[86]  C. Hill,et al.  The ventral to dorsal BMP activity gradient in the early zebrafish embryo is determined by graded expression of BMP ligands , 2013, Developmental biology.

[87]  B. Riley,et al.  Identification of Early Requirements for Preplacodal Ectoderm and Sensory Organ Development , 2010, PLoS genetics.

[88]  T. Lacalli,et al.  DORSOVENTRAL AXIS INVERSION : A PHYLOGENETIC PERSPECTIVE , 1996 .

[89]  Y. Sasai,et al.  Dorsoventral Patterning in Xenopus: Inhibition of Ventral Signals by Direct Binding of Chordin to BMP-4 , 1996, Cell.

[90]  R. Ho,et al.  The nieuwkoid/dharma homeobox gene is essential for bmp2b repression in the zebrafish pregastrula. , 1999, Developmental biology.

[91]  James Briscoe,et al.  Morphogen rules: design principles of gradient-mediated embryo patterning , 2015, Development.

[92]  H. Uchiyama,et al.  Direct binding of follistatin to a complex of bone-morphogenetic protein and its receptor inhibits ventral and epidermal cell fates in early Xenopus embryo. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[93]  David M. Umulis,et al.  Shaping BMP morphogen gradients in the Drosophila embryo and pupal wing , 2005, Development.