Overlapping Pfaffians

. A combinatorial construction proves an identity for the product of the Pfaffian of a skew-symmetric matrix by the Pfaffian of one of its submatrices. Several applications of this identity are followed by a brief history of Pfaffians.

[1]  A. Dress,et al.  A Simple Proof of an Identity Concerning Pfaffians of Skew Symmetric Matrices , 1995 .

[2]  L. Carroll,et al.  The mathematical pamphlets of Charles Lutwidge Dodgson and related pieces , 1994 .

[3]  B. Leclerc,et al.  On Identities Satisfied by Minors of a Matrix , 1993 .

[4]  G. Lehrer,et al.  The characters of the group of rational points of a reductive group with non-connected centre. , 1992 .

[5]  John R. Stembridge,et al.  Nonintersecting Paths, Pfaffians, and Plane Partitions , 1990 .

[6]  Anders Thorup,et al.  On Giambelli's theorem on complete correlations , 1989 .

[7]  Howard Rumsey,et al.  Determinants and alternating sign matrices , 1986 .

[8]  G. M.,et al.  The Theory of Determinants in the Historical Order of Development , 1921, Nature.

[9]  J. Schur,et al.  Über die Darstellung der symmetrischen und der alternierenden Gruppe durch gebrochene lineare Substitutionen. , 1911 .

[10]  L. Saalschütz Zur Determinanten-Lehre. , 2022 .

[11]  G. M. The Theory of Determinants in the Historical Order of Development , 1906, Nature.

[12]  J. Brill Note on the Algebraic Properties of Pfaffians , 1901 .

[13]  Giornale di Matematiche , 2022 .

[14]  Zeitschrift für Mathematik und Physik , 1891 .

[15]  M. Reiss Beiträge zur Theorie der Determinanten , 2022 .

[16]  C. L. Dodgson,et al.  IV. Condensation of determinants, being a new and brief method for computing their arithmetical values , 1867, Proceedings of the Royal Society of London.

[17]  F. Brioschi Sur l'analogie entre une classe de déterminants d'ordre pair; et sur les déterminants binaires. , 1856 .

[18]  C. Jacobi,et al.  Ueber die Pfaffsche Methode, eine gewöhnliche lineäre Differentialgleichung zwischen 2n Variabeln durch ein System von n Gleichungen zu integriren. , 1827 .