Sparsification—a technique for speeding up dynamic graph algorithms

We provide data strutures that maintain a graph as edges are inserted and deleted, and keep track of the following properties with the following times: minimum spanning forests, graph connectivity, graph 2-edge connectivity, and bipartiteness in time<italic>O</italic>(<italic>n</italic><supscrpt>1/2</supscrpt>) per change; 3-edge connectivity, in time <italic>O</italic>(<italic>n</italic><supscrpt>2/3</supscrpt>) per change; 4-edge connectivity, in time <italic>O</italic>(<italic>n</italic>α(<italic>n</italic>)) per change; <italic>k</italic>-edge connectivity for constant <italic>k</italic>, in time <italic>O</italic>(<italic>n</italic>log<italic>n</italic>) per change;2-vertex connectivity, and 3-vertex connectivity, in the <italic>O</italic>(<italic>n</italic>) per change; and 4-vertex connectivity, in time <italic>O</italic>(<italic>n</italic>α(<italic>n</italic>)) per change. Further results speed up the insertion times to match the bounds of known partially dynamic algorithms. All our algorithms are based on a new technique that transforms an algorithm for sparse graphs into one that will work on any graph, which we call <italic>sparsification.</italic>

[1]  Monika Henzinger,et al.  Lower Bounds for Fully Dynamic Connectivity Problems in Graphs , 1995, Algorithmica.

[2]  Monika Henzinger,et al.  Randomized dynamic graph algorithms with polylogarithmic time per operation , 1995, STOC '95.

[3]  Tomás Feder,et al.  Balanced matroids , 1992, STOC '92.

[4]  Robert E. Tarjan,et al.  A data structure for dynamic trees , 1981, STOC '81.

[5]  Greg N. Frederickson,et al.  Data structures for on-line updating of minimum spanning trees , 1983, STOC.

[6]  Robert E. Tarjan,et al.  Verification and Sensitivity Analysis of Minimum Spanning Trees in Linear Time , 1992, SIAM J. Comput..

[7]  Zvi Galil,et al.  Maintaining Biconnected Components of Dynamic Planar Graphs , 1991, ICALP.

[8]  Monika Henzinger,et al.  Maintaining Minimum Spanning Trees in Dynamic Graphs , 1997, ICALP.

[9]  David Eppstein,et al.  Using Sparsification for Parametric Minimum Spanning Tree Problems , 1996, Nord. J. Comput..

[10]  M. Rauch,et al.  Fully dynamic biconnectivity in graphs , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[11]  Harold N. Gabow,et al.  Applications of a poset representation to edge connectivity and graph rigidity , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[12]  Zvi Galil,et al.  Maintaining biconnected components of dynamic planar graphs (extended abstract) , 1991 .

[13]  Valerie King A Simpler Minimum Spanning Tree Verification Algorithm , 1995, WADS.

[14]  Frank Harary,et al.  Graph Theory , 2016 .

[15]  Harold N. Gabow,et al.  Efficient Algorithms for Graphic Intersection and Parity (Extended Abstract) , 1985 .

[16]  Greg N. Frederickson Ambivalent Data Structures for Dynamic 2-Edge-Connectivity and k Smallest Spanning Trees , 1997, SIAM J. Comput..

[17]  David Eppstein Offline Algorithms for Dynamic Minimum Spanning Tree Problems , 1994, J. Algorithms.

[18]  David Eppstein,et al.  Finding the k Smallest Spanning Trees , 1990, BIT.

[19]  Rajeev Motwani,et al.  On certificates and lookahead in dynamic graph problems , 1996, SODA 1996.

[20]  Han La Poutré Maintenance of Triconnected Components of Graphs (Extended Abstract) , 1992, ICALP.

[21]  R. Tarjan,et al.  Frederickson, \data Structures for On-line Updating of Minimum Spanning Trees", Siam , 2007 .

[22]  Peter Bro Miltersen,et al.  Complexity Models for Incremental Computation , 1994, Theor. Comput. Sci..

[23]  Robert E. Tarjan,et al.  Depth-First Search and Linear Graph Algorithms , 1972, SIAM J. Comput..

[24]  Ming-Yang Kao,et al.  Scan-First Search and Sparse Certificates: An Improved Parallel Algorithms for k-Vertex Connectivity , 1993, SIAM J. Comput..

[25]  Donald S. Fussell,et al.  Techniques for the design of parallel graph algorithms , 1989 .

[26]  Leslie G. Valiant,et al.  Fast probabilistic algorithms for hamiltonian circuits and matchings , 1977, STOC '77.

[27]  Zvi Galil,et al.  Reducing edge connectivity to vertex connectivity , 1991, SIGA.

[28]  Monika Henzinger,et al.  Fully dynamic biconnectivity and transitive closure , 1995, Proceedings of IEEE 36th Annual Foundations of Computer Science.

[29]  Giuseppe Cattaneo,et al.  Experimental analysis of dynamic minimum spanning tree algorithms , 1997, SODA '97.

[30]  Zvi Galil,et al.  Fully Dynamic Algorithms for 2-Edge Connectivity , 1992, SIAM J. Comput..

[31]  Robert E. Tarjan,et al.  Computing minimal spanning subgraphs in linear time , 1992, SODA '92.

[32]  Rajeev Motwani,et al.  On Certificates and Lookahead in Dynamic Graph Problems , 1996, SODA '96.

[33]  Roberto Tamassia,et al.  On-Line Graph Algorithms with SPQR-Trees , 1990, ICALP.

[34]  Paul F. Dietz,et al.  Two algorithms for maintaining order in a list , 1987, STOC.

[35]  David Eppstein,et al.  Sparsification-a technique for speeding up dynamic graph algorithms , 1992, Proceedings., 33rd Annual Symposium on Foundations of Computer Science.

[36]  Joseph Cheriyan,et al.  Algorithms for parallel k-vertex connectivity and sparse certificates , 1991, STOC '91.

[37]  Greg N. Frederickson,et al.  Algorithms and Data Structures for an Expanded Family of Matroid Intersection Problems , 1989, SIAM J. Comput..

[38]  Zvi Galil,et al.  Fully dynamic algorithms for edge connectivity problems , 1991, STOC '91.

[39]  Robert E. Tarjan,et al.  Dividing a Graph into Triconnected Components , 1973, SIAM J. Comput..

[40]  Zvi Galil,et al.  Maintaining the 3-Edge-Connected Components of a Graph On-Line , 1993, SIAM J. Comput..

[41]  Robert E. Tarjan,et al.  Efficient algorithms for finding minimum spanning trees in undirected and directed graphs , 1986, Comb..

[42]  Jon Louis Bentley,et al.  Decomposable Searching Problems I: Static-to-Dynamic Transformation , 1980, J. Algorithms.

[43]  Giuseppe Cattaneo,et al.  An empirical study of dynamic graph algorithms , 1996, SODA '96.

[44]  Matthias F. Stallmann,et al.  Efficient Algorithms for Graphic Matroid Intersection and Parity (Extended Abstract) , 1985, ICALP.

[45]  Kurt Mehlhorn,et al.  Data Structures and Algorithms 1: Sorting and Searching , 2011, EATCS Monographs on Theoretical Computer Science.

[46]  Monika Henzinger,et al.  Certificates and Fast Algorithms for Biconnectivity in Fully-Dynamic Graphs , 1995, ESA.

[47]  Greg N. Frederickson,et al.  Data Structures for On-Line Updating of Minimum Spanning Trees, with Applications , 1985, SIAM J. Comput..

[48]  Harold N. Gabow A matroid approach to finding edge connectivity and packing arborescences , 1991, STOC '91.

[49]  Roberto Tamassia,et al.  On-line maintenance of the four-connected components of a graph , 1991, [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science.

[50]  David Eppstein Tree-weighted neighbors and geometric k smallest spanning trees , 1994, Int. J. Comput. Geom. Appl..

[51]  David Eppstein,et al.  Separator Based Sparsification. I. Planary Testing and Minimum Spanning Trees , 1996, J. Comput. Syst. Sci..

[52]  Philip N. Klein,et al.  A randomized linear-time algorithm to find minimum spanning trees , 1995, JACM.

[53]  Robert E. Tarjan,et al.  Finding Biconnected Components and Computing Tree Functions in Logarithmic Parallel Time (Extended Summary) , 1984, FOCS.

[54]  David Eppstein,et al.  Maintenance of a minimum spanning forest in a dynamic planar graph , 1990, SODA '90.